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CONTINUED FRACTIONS1

FRIEDRICH L. BAUER AND EVELYN FRANK

1. Introduction. It is the purpose of this note to point out the

connection between the work of Bauer [l]2 and Frank [3] on certain

continued fractions. A matrix approach similar to that in [l] shows

clearly that these are analogues of Stieltjes-type and Jacobi-type

continued fractions. An example is given of an expansion used for

numerical purposes in [l], which is closely related to the Euler ex-

pansion [2]. This is obtained by a factorization of the Frobenius

matrix. Special cases of such expansions coincide with certain cases

of the hypergeometric continued fraction of Frank [3]. There is also

a connection shown between the expansions in §2 and the extended

Schur continued fraction [4],

2. Matrix approach. Let tt„ define the space of polynomials of

degree n with coefficient of the highest power equal to 1. If one is

given a polynomial P(x)ETrn and a polynomial pn-i(x)ETrn-i, then

there are defined polynomials p^(x)Eirn (n — l^u^O) and poly-

nomials rp(x)E'"'i> (w —1=M = 0) by the euclidean algorithm for P(x)

= rn(x) and pn_i(x), as follows:

(2.1) xpi(x) — ri+i(x) = qn-iTi(x), i = n — 1, n — 2, ■ ■ • , 0,

(2.2) n(x) — pi(x) = en-ipi-i(x),   (en =■ 0), i = n — 1, n — 2, ■ ■ ■ , 0.

Define the row-vectors

(2.3) (P  =   (pn-l(x),  pn-i(x),   ■   ■   ■   ,  Po(x)),

(2.4) <R = (rn-i(x), rn-2(x), • • • , r0(x)).

Then the euclidean algorithm takes the form

(2.5) x<? = (RQ mod P(x),

and

(2.6) (3t = (?E,
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where Q and E are the "Stieltjes-type" matrices

qi    1 0

(2.7) Q = q*.   l .

0 ' ■    '-.

( 1 1
0

ei     1

(2.8) E= e2     1

0 ' 1.

On elimination of either (R or (P, one obtains

(2.9) x<? = <?EQ mod P(x),

and

(2.10) x(R = (RQE mod P(x),

where EQ and QE are the tri-diagonal matrices

?i    1 0'

Cl?l  «1 + ?2      1

C2?2    «2 + ?3      1

(2.11) £(2= e,qz      ei + q< 1

' 1

0
e„_ig„_i en-i + qn .

ei+qi 1 '

eiq2       e2 + q2      1

e2q%    «3 + ?3   1

(2.12) QE= e3?4 et + gi       1

•    1

.0 en-iqn    qn
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From these formulae one may write down immediately the two J-

fractions

(2       31   P"-1^   _     1 glgl g„_lg„-l

P(x)        x — qi — x — q2 — ei — ■ • • — x — qn — e„_i

and

r„_i(x)      1        ei$2 e„_ig„
(2.14) -= -  -       - •

P(x)        x — qi — ei — x — q2 — e2 — ■ • ■ — x — qn

Furthermore, formulae (2.1) and (2.2) can be represented by the

matrix equation

(xi     -E\
(2.15) (<P(R)( ) = OmodP(x).

The compound matrix in this formula may be rearranged to the tri-

diagonal form

x      -1 0

-qi 1       -1

— ei        x      —1

-q* 1        -1

— e2 x      —1

— en-i     x      —1

0 -q„ 1,

From this one obtains the Stieltjes continued fraction

pn-i(x)       1        qi       et qn

(2.16) - = —      —      — — •
P(x) x  —   1   —  x   — • • ■ —   1

2. A similar approach. It is possible to set up another division

algorithm which differs from the preceding by the fact that the matrix

E in (2.6) is not a Stieltjes-type matrix but the reciprocal of such a

matrix. In this algorithm, all quantities are denoted by an accent

circonflexe. One has in this case

(2.5) x-ff = ffi<2 mod P(x),

(2.6) (R = S>Er\

(2.9) x■ 9 = cPE-1^ mod P(x),

(2.10) x-<k= &QE-1 mod P(x).
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Formulae (2.5) and (2.6) give explicitly the division algorithm for

P(x)=fn(x) and fn-i(x), namely,

(2.1) fi+i(x) + q„-ifi(x) = xpi(x),       i = n - 1, n - 2, ■ ■ ■ , 0,

(2.2) pi(x) - fi(x) = en-ih~i(x),  (in m 0), i = » - 1, n - 2, ■ • •, 0.

From (2.1) and (2~.2), or from (2.10) in the form

di-(xE - Q) = 0 mod P(x),

one obtains the analogue of (2.14),

tn-l(x) 1 eiX e2X in-lX

(2.14)       -=-■     -     - -•
P(x)        x — qi + x — q2 + x — q3 + • • • + x — qH

From (2.1) and (2.2) with i replaced by i-\-l, one obtains the

recurrence relation

(2.1a) pi+i(x) + (qn-i - en-i-i)fi(x) = xpi(x), (So = 0),

i = « — 1, « — 2, • • • , 0.

From (2.1a) and (2.2) one can then derive the  analogue  of  the

Stieltjes-type continued fraction (2.16),

fn-i(x) 1 x ii x e2

,% «*s P(*) ~?i +   1-?2+ ii +  1-q3+ e2
(2.16)

X Cn—1 X

-l.  i   _ . . .-qn _|_ |n_j -)_  1

Furthermore, one can derive the analogue of the /-fraction (2.13)

qi ?2 — h
-eiX -■ e2x

pn-i(x) 1 q2 — ii q3 — e2

P(x) qi q2 — ii q3— e2
x-q2+ x-q3 + x-qA + ■ ■ •

fi 13s ?2 _ gi ?3 - i2 C[i - h

q.n-2 —  in-3 Jn-1 —   ^n-2
-en-2x        —-in-ix
qn-i — in-i qn ~ in-i

qn-l —  in-i

+ x-qn +    * - (qn - !„_,)

qn — en-i

The continued fractions (2.13) and (2.14) are essentially the even

and odd parts, respectively, of (2.16). Similarly, the analogues of

these continued fractions, namely, (2.13) and (2.14), are the odd

and even parts, respectively, of (2.16) (cf. Perron [5, pp. 12-13]).
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Note added in proof: For completeness we mention the following

continued fraction

pn-i(x)       1 qiq2 exx q2q3 e2x

p(x) x  — q2 — Ci +  x    — q%— t2+   x    — ■ ■ ■

(2.13) and (2.14) are essentially the even and odd parts, respectively,

of this continued fraction.

3. A continued fraction expansion for 1/(1+ai2-r-a2Z2+a303-r- • • •).

The Frobenius matrix

' -ai       1 0

-at 1

— a3 1
p =

— <j„_i 1

. -a„             0                       0

of the polynomial

P(x) = xn + aix"-1 + ■ ■ ■ + an-iX + On

can be factored into the product E~lQ, namely,

'1 ]-'   f -oi 1

—a% — at

ai ai

F = -a3 • —Os
l l ,

ao a?
' .     ' . i

— a,, ■    —a„

a»-i J       I o»-i

(cf. Bauer [l, p. 189]). Consequently, one can immediately write a

special continued fraction of the form (2.14) with et= — ai+i/a,-,

* = 1, 2, • • • , n — 1, and qi= —ai/ai-i, a0 = l, *=1, 2, • • • , n. The

polynomials t%(x) from which this continued fraction is generated

can be calculated from the recurrence formulae (2.1) and (2.2) where

one starts with r0=l, po—1- One obtains

(3.1) pi(x) = x\ i = 0, 1, • • ■ , n - 1,

and

1
(3.2) fi(x) = - (an-iX1 + an-i+ix*-1 + • ■ • + an).

Qn—i
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Therefore, the continued fraction expansion for ai~1(P(x) — xn)/P(x)

is

«2 «3 an

~~~"   X tV As

1 ttl d2 O-n-l

(3.3)--
02 03 0,n

x + ai — x -\-x -\-• • • — x -\-
ai a2 a„_i

(formula 48 of Bauer [l]), or

a2 an

xn oi ai a„_i

(3.4) — =1-
P(x) a2 a„

x + ai — x -\-• • • — x -\-
«i a»-i

The substitution of x= 1/z gives

1

1 + aiZ + a2z2 + ■ ■ ■ + a„3n

a2                                    a„
— z - 2

(3.5) ai2 ai an-i
= 1- -

a2 an
1 + aiZ — 1 -|-z— ••• — 1-)-z

oi an-i

When one takes the reciprocal of both sides of (3.5) (even applied to

an infinite sequence {a,.}), the resulting expansion is the well-known

equivalent continued fraction of Euler [2] (with a slight transforma-

tion at the beginning),

1 + aiZ + a2z2 + ■ ■ ■

a2 a3
— z — z

(3.6) 1 aiZ ai a2

a2 a3
1 - 1 + aiz - 1 H-z-l-l-z - • • •

oi a2

If the series on the left-hand side of (3.6) converges, the equivalent

continued fraction on the right-hand side converges to the same value,

while, if the series diverges, the continued fraction likewise diverges.

4. Other special cases. For the special case of the hypergeometric

function F(a, 1, y, z),p(3.6) takes the form
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a a + 1
-   2 -  2

1 7 7+1
(4.1)        - =1---      —-

F(a, 1, 7, z) a a + 1
1-1-2-1-1-2 -  • • •

7 7+1

valid for |z|<l (cf. Frank [3, formula 5.2]). For |z|>l, (4.1)

converges to the value 0 [3, Theorem 3.1].

Furthermore, expansions (2.13), (2.14), and (2.16) can be com-

pared with the generalized Schur continued fractions (cf. Frank [4]).

The expansion (1.1) of [4],

&o(l ~ 7of o)z 1 kx(l - 7i7i)z 1

7oZ — ^171 + 7i2 — ^272 + • • •

I   -V- I      5^    1I    It |      T-    1,

is equivalent to the expansion (2.16) for tn-i(l/z)/P(l/z) if the kt

and 7i have the values

,,  „. *o(l - 7o7o) = - 1, ki(l - 7,7) = ii,
(4.3)

7o = qi,      7; = ?.+i - it,     i = 1,2, ■ ■ ■ ,n — 1,

with the additional restriction

(4.4) km = 1, i = 1, 2, • • • , n.

With the same values (4.3) and (4.4), the even part of (4.2) (cf.

expansion (6.1) of [4]) is equivalent to the expansion (2.14) for

fn-i(l/z)/P(l/z). Also, the odd part of (4.2) is equivalent with the

values (4.3) and (4.4) to the expansion for fn-i(l/z)/P(l/z) which

can be obtained from the value for pn-i(l/z)/P(l/z) from (2.13),

as follows:

fn-l(l/z)    = 1_ 1      pn-l(l/z)

P(l/z) ' ^       qiz '   P(l/z)

For these continued fractions, convergence regions are found in [4].
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A THEOREM ON 4-L00PS

J. MARSHALL OSBORN

In a recent article, R. H. Bruck and Lowell J. Paige have investi-

gated 4-loops, or loops for which every element of the inner mapping

group is an automorphism (see [l]). Specifically, they have shown

that .4-loops with the inverse property are diassociative and that

there exist noncommutative diassociative ^4-loops. The authors also

conjecture that the only commutative diassociative 4-loops are the

commutative Moufang loops. The purpose of the present note is to

offer a proof of this conjecture.

Let y and z be two elements of a commutative diassociative .4-loop

G, and let i?„ denote right multiplication in G by the element y.

Then S = RlRvRz„1 is an element of the inner mapping group, so that

wS-xS=(wx)S for every pair of elements w and x of G. Setting

w=pq and x = q_1 gives (pq)S = pS- [g_15]_1, and comparing with

the first equation, we see that

xRzRyRzy = xS = [x   S]     = [(x   z-y)-(zy)

= (xz    -y   )-(zy) = xRz Ry Rzy .

Thus1 RzRvR~y =RzXRv~1Rzy, or R2y = RyR2Ru. Using diassociativity,

we can write this as (xyz2) -y = x- (yz2y), which is just a form of the

Moufang identity except for the fact that z is squared. Our problem

is to show that the identity holds without this restriction.

We observe, first of all, that the subloop of G consisting of all

squares is a commutative Moufang loop. This already proves our

theorem for loops all of whose elements have odd orders. One expects

difficulty for loops containing elements of order two, particularly

Received by the editors October 12, 1957.

1 This formula may also be obtained from equation (3.24) of [l] by setting LZ = RX.


