COMPRESSIONS TO FINITE-DIMENSIONAL SUBSPACES
CHANDLER DAVIS!

Let 3¢ be hilbert space (any dimensionality, real or complex
scalars). Let P be a hermitian projection. L.et 4 be any hermitian
operator. The compression of A to P [3] is PAP, considered as an
operator on P3C. Compressions of completely continuous positive
operators are of interest in connection with estimating eigenvalues:
the Fischer-Courant minimax theorem [5, p. 235] says the kth high-
est eigenvalue of PAP is not greater than that of 4. Compressions
enter in the study of more general mappings of operators, often via
Naimark’s theorem [6].

Especially in the first connection, the case where P3C is finite-
dimensional is interesting. But in some problems a finite-dimensional
subspace may be known, not via the operator P, but via an arbitrary
set of vectors which span it; if they are not orthonormal, one would
rather not have to find P. This suggests that the following elementary
formulas may be worth pointing out. I suppose that at least Formula
1 must be known already, but not, apparently, very widely.

NOTATION. X1, * + -, X, form a linear basts of P3C. G denotes the
determinant of their Gramian (nXn matrix with i, j entry (xi;, x;)). If
the kth row of the Gramian is replaced by (2, x1), + - -, (2, %), all other
rows being left unchanged, the determinant of the resulting matrix will
be denoted G(xir; 2).

Evident properties: G(x¢; 2) =0 if 2= (1 —P)z or z2=x, (¢7#k), while
G(x1; xx) =G; also G(xk; 2) is linear in z. These may be summed up
by saying that G(x; 2) = (2, x§)G, where {x;", N x:} is the basis
of P3¢ biorthonormal with {x;, - - -, x,}.

FORMULA 1. Pz=G"1D_; G(xx; 2)xi. (This notation here and below
means summation over all available values of the index.)

Proor. Uniquely z= Y.;ax;+(1—P)z. Substitute this on both
sides, and use the evident properties of G(xk; 2).

FORMULA 2. tr(PAP) =G~ D G(xi; Axx).

PRrROOF. Let &, - - -, &, be orthonormal eigenvectors of PAP, and
A, - - -, A\ their respective eigenvalues; then x;= 2, T;&,, where T
is some nonsingular matrix. Recall that

(i, %) = 2 Ty Tiallp &) = 2 Ti,Tj, = (TT*)
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gives G=|det T|2 (* denotes conjugate transpose.) It remains to
prove that, analogously, Zk G(xx; Axx) = |det TI 2tr(PAP). Now
(Axi, x;)=(PAPx;, x;))= 9., TiMTj. So if we let R* denote the
matrix with entries R}, =T, (17k) and Ry, = Ti,\,, we have G(x;; Ax;)
=det(R*T*), D1 G(xi; Axx) =det T*D_, det R*. In the expansion

k ceem
Z det R = Z Z 6;1,~'~,p"T1p1 c Top ey

k k p1ycccipn

the summation over & may be carried out first: » N, =tr(PAP) for

any (p1, * * *, pa) giving a nonzero contribution. This gives the result.
The proof would have been simpler if I had exploited the evident

properties of G(xx; 2). I gave this version because Formula 3 is proved

altogether analogously, without introducing any new notions.
Instead of the trace ¢;, consider now c,, where for any B

det (A + B) = > ,(B)\";
that is, ¢, is the vth elementary symmetric polynomial of the eigen-
values. Extend the notation: G(xx,; 21)(x,; 22) is the determinant of
the matrix which differs from the Gramian in having kith row
(21, 1), * * +, (21, %) and in having koth row (22, x1), - - -, (22, %.);
and so forth.

FORMULA 3.2 ¢,(PAP) =G D G(ax,; Axwx,) - - - (xi,; Ax,). (In this
equation summation is over all distinct v-tuples {k, - - -, &,} from
among {1, - - -, n}.)

PRrOOF. See under Formula 2.

An interesting case is where A is another projection Q. A complete
set of unitary-invariants for the pair of subspaces P3¢ and Q3C is
the spectrum of PQP and its multiplicity function (together with the
dimensionalities of Q3¢ (1 —P)3¢ and (1 —Q)3eN(1—P)3¢) [1;2].* For
a simple numerical measure of the closeness of P3C to being contained
in Q3C, tr(PQP) recommends itself (or, if you like, n~! tr(PQP)). If
Q3¢ is finite-dimensional, one may ask for a modification of Formula
2 which treats P and Q symmetrically.

Y1, * * +, ¥m form a linear basis of Q3C. H denotes the determinant
of their Gramian; H(y;; 2), etc. are defined in analogy to previous
notations.

FORMULA 4. tr(PQP) =tr(QPQ) = (GH)™' X G (xx; y) H(y1; xi).

2 The case »=n shows the equivalence of Theorem 1 of [4] to Weyl's theorem
which it generalizes.

3 One might prefer replacing PQP by PQP+(1—P)(1—Q)(1 —P)=1—P—Q+PQ
+QP, making apparent the symmetrical roles of P and Q [1].
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Proor. I have proofs of Formulas 4 and 5 along the unsophisti-
cated lines followed above for Formulas 2 and 3, but they are clumsy.
Instead, rewrite the right side of Formula 4 in terms of the biortho-
normal bases {x1, - - -, x,}, {«f, - -, «¥) of Pac, {y1, - - -, yul},
{y¥, - -+, ¥k} of Qac. It equals

X O )@ 1) = 20 (e 31)30 10) = 3 (0m, #) = te(PQP),
kl kl

by Formulas 1 and 2.
ForMmuLa §.

¢(PQP) = ¢,(QPQ)
= (GH)™ 30 Glauy; 1) + + - (2,3 33) HOws #w) « + + (1,5 ).

(In this equation summation is over all distinct pairs of »-tuples,
{ky, -+, k} from among {1, .-, n} and {5, -- -, L} from
among {1, - - -, m}.)

Proor. The equation

G z) -+ (1,;2) = GVI(E ® - ® 2, Gry. . )

defines an element G:;- ..x, of 3¢, the tensor product of » copies of 3C.
Extend {xl, cee x,,} to a basis of 3¢ by adjoining an orthonormal
basis {x,.+1, Xni2y * ° * } of (1—P)3c. The elements x,,® - - - ®x,
form a linear basis of 3¢*. By considering its scalar products with
these basis vectors, Gy,...x, is identified as

1 kyeeoky k * * *
J— Z €. .1, %1, R - R X1, = X, Q- Xk, 1
V! Iyl

(Again e is defined by e= 31 if (};, - - -, },) is respectively an even or
an odd permutation of (ky, - - -, k), e=0 otherwise. The bracket
on the subscripts, denoting antisymmetrization, is defined by the
equation.)

The easily-proved analog of Formula 1 is

Pz ® -+ - @ Pz,
* *
= Z(Zl® @2, Q@ @A), Q- @
Eyeek
Formula 3 in the new notation reads

G(PAP) = Y (A2, ® +++ @ Axp, 40 ® @ 25);
kie e oky
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this is not disturbed if the subscripts of the Ax;,; are also bracketed.
The right side of Formula 5 becomes

* *
2 n® @y, rw ® @ x5, @ ¢ ¢ - ® T,
kyveckyslyeooly * *
Y @+ @ ).

By the analog of Formula 1 this is equal to
* *
2 (Qx, ® -+ ® Qmiy, T, ® ¢ - - @ ),
Ky oky

and by Formula 3 this is ¢,(PQP), as claimed.

The analogy to the special case, Formula 4, could be strengthened
by mentioning that Pzu® - - - ®Pz,;=P,(z1® - - - ®3,), where P,
is the hermitian projection on the subspace of 3¢” linearly spanned by
antisymmetrized products of elements of P3. The x4, ® - - - Quxi,
and the xf}, ® - - - ®x;) are almost biorthonormal bases of P,3¢":

* * 1 4.
(g, ® - - QX X, @+ @ Xu,)) = = ek
vl
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