
COMPRESSIONS TO FINITE-DIMENSIONAL SUBSPACES

CHANDLER DAVIS1

Let X be hilbert space (any dimensionality, real or complex

scalars). Let P be a hermitian projection. Let A be any hermitian

operator. The compression of A to PX [3] is PAP, considered as an

operator on PX. Compressions of completely continuous positive

operators are of interest in connection with estimating eigenvalues:

the Fischer-Courant minimax theorem [5, p. 235] says the &th high-

est eigenvalue of PAP is not greater than that of A. Compressions

enter in the study of more general mappings of operators, often via

Naimark's theorem [6],

Especially in the first connection, the case where PX is finite-

dimensional is interesting. But in some problems a finite-dimensional

subspace may be known, not via the operator P, but via an arbitrary

set of vectors which span it; if they are not orthonormal, one would

rather not have to find P. This suggests that the following elementary

formulas may be worth pointing out. I suppose that at least Formula

1 must be known already, but not, apparently, very widely.

Notation. Xi, • • • , xn form a linear basis of PX. G denotes the

determinant of their Gramian (nXn matrix with i, j entry (xit Xj)). If

the kth row of the Gramian is replaced by (z, Xi), • • ■ , (z, xH), all other

rows being left unchanged, the determinant of the resulting matrix will

be denoted G(xk; z).

Evident properties: G(xk; z) =0 if z= (1 —P)z or z = Xi (i^k), while

G(xk; xk)=G; also G(xk; z) is linear in z. These may be summed up

by saying that G(xk, z) = (z, xX)G, where [x*, • ■ ■ , x*} is the basis

of PX biorthonormal with {xi, • • ■ , xn}.

Formula 1. Pz = G~122k G(xk; z)xk. (This notation here and below

means summation over all available values of the index.)

Proof. Uniquely z= ^,-a,x, + (l —P)z. Substitute this on both

sides, and use the evident properties of G(xk; z).

Formula 2. tr(PAP) =G~122k G(xk; Axk).

Proof. Let £i, • • • , £„ be orthonormal eigenvectors of PAP, and

Xi, • ■ • , Xn their respective eigenvalues; then xt= 22? T(p^p, where T

is some nonsingular matrix. Recall that

(X{,  Xj)   =   2—i  •* ip-L j«\<Zl>i S<V   =   2—1   -L ip-t IP   =   (■* ■*    )ij
ptr p
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gives G=|det jT|2. (.* denotes conjugate transpose.) It remains to

prove that, analogously, 22* G(xk; Axk) = | det T\2 tr(PAP). Now

(Axi, Xj) = (PAPxi, Xj)=22pTi^kpTjp. So if we let Rk denote the

matrix with entries R^„ = Tip (i^k) and R*p = T^X,, wehave G(xk; Axk)

= det(i?*r*),   22kG(xk; Axk)=det T*22kdet Rk. In the expansion

22 det R   =22     X)    «pi.-".p„7,1(.1 ■ • ' TnPn\Pk
k k     pi, • • •,p„

the summation over k may be carried out first: 22k \k = tr(PAP) for

any (pi, • • • , pn) giving a nonzero contribution. This gives the result.

The proof would have been simpler if I had exploited the evident

properties of G(xk; z). I gave this version because Formula 3 is proved

altogether analogously, without introducing any new notions.

Instead of the trace C\, consider now c„ where for any B

det (\+ B) = 22c,(B)\n~';
V

that is, c, is the ^th elementary symmetric polynomial of the eigen-

values. Extend the notation: G(xkl; Zi)(xkl; z2) is the determinant of

the matrix which differs from the Gramian in having kith row

(zi, xx), • • • , (zi, xn) and in having &2th row (z2, xx), • • • , (z2, xn);

and so forth.

Formula 3.2 c*(PAP) =G-l22G(xkl; Axk,) ■ ■ (xky;Axky). (In this

equation summation is over all distinct v-tuples {ki, • • • , &„} from

among {l, • • • , n}.)

Proof. See under Formula 2.

An interesting case is where A is another projection Q. A complete

set of unitary-invariants for the pair of subspaces PX. and Q3C is

the spectrum of PQP and its multiplicity function (together with the

dimensionalities of QX.C\(1-P)X,and (1 -<2)3CPi(l -P)3C) [l;2].*For
a simple numerical measure of the closeness of P3C to being contained

in QX, tr(PQP) recommends itself (or, if you like, m"1 tr (PQP)). If

Q3C is finite-dimensional, one may ask for a modification of Formula

2 which treats P and Q symmetrically.

yii • • ' i ym form a linear basis of Q3C. II denotes the determinant

of their Gramian; H(yi; z), etc. are defined in analogy to previous

notations.

Formula 4. tr(PQP) = tr(QPQ) = (GH)-122kiG(xk; yi)H(yi; xk).

1 The case v = n shows the equivalence of Theorem 1 of [4] to Weyl's theorem

which it generalizes.

» One might prefer replacing PQP by PQP + (1 -P)(l-Q)(l -P) = 1 -P-Q+PQ
-\-QP, making apparent the symmetrical roles of P and Q [l].



358 CHANDLER DAVIS [June

Proof. I have proofs of Formulas 4 and 5 along the unsophisti-

cated lines followed above for Formulas 2 and 3, but they are clumsy.

Instead, rewrite the right side of Formula 4 in terms of the biortho-

normal bases {xu • • ■ , xn}, {x*, ■ ■ ■ , x*} of PX, {yu • ■ ■ , ym},

{y*< ■ ■ • - >'*.} of QX. It equals

22 (yi> xk)(xk, yi) = 22 ((%k, yi)yi, xk) = 22 ((?**, **) = tr(PQP),
kl H k

by Formulas 1 and 2.

Formula 5.

c,(PQP) = c,(QPQ)

= (GH)'1 22 G(xkl; yh) ■ ■ ■ (xk„; yi,)H(yh; xk) ■ ■ ■ (yh; xk,).

(In this equation summation is over all distinct pairs of y-tuples,

{ki, • • • ,  ky}   from  among   (1, • • • ,  n}   and   {h, • ■ ■ , /„}   from

among {1, • • • , m}.)

Proof. The equation

G(xkl; zi) • • • (xky; z,) = Gv\(zi ® • ■ ■ ® z„ Gkl...kl)

defines an element G*r . .ky of X', the tensor product of v copies of X.

Extend {xi, ■ ■ ■ , xn} to a basis of X by adjoining an orthonormal

basis {xn+i, xn+i, • • • } of (1—P)X. The elements xai® • • • ®x,

form a linear basis of X". By considering its scalar products with

these basis vectors, Gti-..kv is identified as

1 ^—, k\   •    •    'ky        * * * *
—    2-,    eii-..J,*Ji ® • • • ® xir = xlkl <g> • • • ® xky].
vl  ii.-.iy

(Again e is defined by e= + 1 if (h, ■ ■ ■ , lv) is respectively an even or

an odd permutation of (ki, ■ • ■ , ky), € = 0 otherwise. The bracket

on the subscripts, denoting antisymmetrization, is defined by the

equation.)

The easily-proved analog of Formula 1 is

Pz[i ® • • • ® Pzt]

=  22 (zi ® • • • ® Zy, X[kx ® • • • ® Xk,i)xkl ® • • • ® xky.

Formula 3 in the new notation reads

c,(PAP) =   22 (Axki ® ■ • • ® Axk„, x\f,i ® • • • ® xt,]);
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this is not disturbed if the subscripts of the Axki are also bracketed.

The right side of Formula 5 becomes

22       iyh ® - • • ® Vh> xiki ® • • • ® xk,\)(xkl ® • • • <8> **„

yih ® • • • ® yj„]).

By the analog of Formula 1 this is equal to

fcj••-ky

and by Formula 3 this is c,(PQP), as claimed.

The analogy to the special case, Formula 4, could be strengthened

by mentioning that Pz[i<8> • • • ®Pzv]=Py(zi® ■ ■ ■ ®z„), where Pv

is the hermitian projection on the subspace of X" linearly spanned by

antisymmetrized products of elements of PX. The x^® • • • ®xky]

and the x*ti® ■ ■ ■ (Six*] are almost biorthonormal bases of P,X":

(x[h <g> • • • <g> xi,], X[ti <8> • • ■ ® x^]) = — ft1,...*'.
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