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1. Introduction. Let X be a partially ordered set (poset) with re-

spect to a relation g, and possessing least and greatest elements 0

and / respectively. There are many known ways of using the order

properties of X to define an "intrinsic" topology on X. It is our

purpose in this note, instead of considering certain special topologies

of this type, to introduce a class of topologies on X which are com-

patible, in a natural sense, with its order. To this end, let us call a

subset S of X up-directed (down-directed) il and only if for all xES

and yES there exists zES with z^x,zg^y(z^x, z^y). Also, following

McShane [3], we shall call a subset K of X Dedekind-closed if and

only if whenever 5 is an up-directed subset of K and y = l.u.b. (S),

or 5 is a down-directed subset of K and y = g.l.b. (S), we have yEK.

We now introduce the following definition, which seems to be a

natural requirement for a topology on X to be harmoniously related

to its order structure.

Definition. If 3 is a topology defined on X, we shall say that 3

is order-compatible with X if and only if

(i) every set closed with respect to 3 is Dedekind-closed, and

(ii) every set of the form {xEX\a^x^b\ is closed with respect

to 3.

The main purpose of this note is to obtain a simple sufficient con-

dition for a poset X to possess a unique order-compatible topology.

We say that two elements x and y in X are incomparable if and only if

x%y and x^y. Let us call a subset 5 of X diverse if and only if xES,

yES, and x^y imply that x and y are incomparable. We define the

width of X to be the l.u.b. of the set {k\ k is the cardinal number of a

diverse subset of X}. We shall then prove, as our main result, that a

poset of finite width possesses a unique order-compatible topology,

with respect to which it is a Hausdorff topological space.

2. Preliminary definitions and lemmas. The reader may verify that

the class of all Dedekind-closed subsets of a poset X is closed with

respect to arbitrary intersections and finite unions. Hence we may

define a topology 3D on X whose closed sets are precisely the Dedekind-

closed subsets of X. We let 8 denote the well-known interval topology

on X, which  is obtained  by taking all sets of the form   [a,  b]
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= {x|a^x^6J as a sub-basis for the closed sets. If S and 3 are any

topologies on X, we define §5=3 to mean that every S-closed set is

3-closed. It is then obvious that we have

Lemma 1. If 3 is any order-compatible topology on X, then

d ^ 3 ̂  3D.

Lemma 2. If X contains no infinite diverse set, then X is a Hausdorff

space in its interval topology.

Proof. Suppose a and b are any distinct points of X. Then [4] X

is a Hausdorff space in its interval topology if there is a covering of

X by means of a finite number of closed intervals such that no in-

terval contains both a and b. We consider the following cases, and

produce such a covering in each instance.

Case (i). a and b are incomparable. Let 5 be a maximal diverse

subset of X containing both a and b. Consider all intervals of the

form [0, s] and [s, I] for sGS. This is a finite set of intervals satisfy-

ing the above requirements.

Case (ii). a<b, but a<x<b for no xEX. Let 5 be a maximal

diverse subset of X containing a, and let T be a maximal diverse set

containing b. Consider the following collections of intervals:

(1) all intervals of the form [0, s] for sES,

(1) all intervals of the form [t, I] for tET,

(3) all intervals which may exist of the form [s, t] for sES and

tET, provided that s = a and t = b are not both true.

The union of the above three collections of intervals satisfies our

requirements.

Case (iii). a<b and there exists x0 with a<x0<b. Let 5 be a maxi-

mal diverse subset containing Xo, T a maximal diverse subset con-

taining b. Then the union of the following three collections of in-

tervals satisfies our requirements:

(1) all intervals of the form [0, s] for sES,

(2) all intervals of the form [/, /] for tET,

(3) all intervals which may exist of the form [s, t] for sES, tET.

Since the above three cases dispose of all possibilities, the proof is

complete.

We shall find it convenient to consider nets of elements in X. We

shall follow the terminology of Bartle [l] and Kelley [2], but give

all the relevant definitions. If / is a function defined on an arbitrary

up-directed poset A and with values lying in X, then we say that/is

a net on A to X. We shall use the notation (f(a), aEA) for such a net.

A net (g({3), 0EB) is said to be a subnet of (f(a), aEA) if and only if
there is a mapping ir: B^>A which satisfies
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(0 g(P)=f(Tr(P)) (or all PEB, and
(ii) given any a0EA, there exists PoEB such that if fi^po then

w(P)^a0.

Let us call a subset of A of the form Ap = {aEA \a^P) a residual

subset of A. A subset C of A will be called cofinal in A if and only if

aEA implies there exists yEC with y^a. If / is a net on A to X,

and Ap is a residual subset of ^4, then the net (f(a), aEAp) will be

called a residual subnet of /. If C is cofinal in A, then the net

(f(a), aEC) will be called a cofinal subnet of/. If PEA, we shall write

Pf(&) (or simply E(/3), if no confusion can arise) to denote the set

{xEX\x=f(a) lor some a^p}. A net / on A to X is said to be

universal if and only if given any subset SEX then either (i) there

exists PEA such that E(P)ES, or (ii) there exists PEA such that

E(P)ES', the complement of S with respect to X. It is a well-known

result [l; 2] that every net possesses a subnet which is universal.

Now let 3 be any topology on X. We say that a net / on A to X

converges to an element y in X if and only if for any 3-open set U

containing y, there exists PEA such that E(P)EU. If/converges to

y, we write f(a)—*y. A subset 5 of X is closed with respect to 3 if

and only if whenever / is a net whose range is in S and f(a)—*y,

then yES [2, p. 66].
The following notation will be useful. If SEX, we write

S*={xEX\x^stor all sES}, and S+={xEX\x^s for all sES}.

If / is a net on A to X, let Pf he the union of all sets of the form

{E(P)}+, lor some PEA; and let Qf be the union of all sets of the

form {E(P)}*, for some PEA. Then we say that an element y in

X is medial for/if and only if yEP*i~^Qf~- We shall need the following

lemma, which was proved by Ward [5, Lemma l] using the terminol-

ogy of filters.

Lemma 3 (Ward). /// is a net with range in X, and iff converges to

y in the interval topology on X, then y is medial for f.

3. Main results. Our main theorem will follow as a consequence of

three more lemmas.

Lemma 4. Let f be a net on A to X and suppose that f(a)—+y in the

interval topology on X. If f(a) is incomparable with y for all aEA,

then there exists an infinite diverse subset of X contained in the range

off.

Proof. Let (u(a), aED) be a universal subnet of/. Since every

subnet of a convergent net is convergent, and to the same limit, we
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have u(a)—>y in the interval topology on X. By Lemma 3, y is medial

for u.

We shall construct inductively an infinite diverse subset of X.

Select hiED arbitrarily. Since y£P* and u(bx) is incomparable with

y, we must have u(8x)EPu- Hence the set Kx= {xEX\ x^u(8x)} con-

tains no Eu(a) for any aED- Since it is a universal net, there exists

some axED such that «i>5i and Eu(ax)CK{ = {xEX\x^u(8x)\.

Also, since yEQt, we have u(8x)EQu\ and hence Lx = {xEX\x^u(8x)}

contains no Eu(a) for any aED. Hence there exists some fixED such

that ft>5i and Eu(Pi)CL{ = {xEX\ x$u(8i)}. Select yiED such
that Yi^ai, 7i^j6\. Then Eu(ji)CEu(ai)f^Eu((ii). It is clear from our

construction that u(oi) is incomparable with each element of Eu(yx).

Now choose d2ED such that 82^yx. In an analogous way we ob-

tain a2 and ft2 such that Eu(a2) C {x E X\x £ u(82)}, Eu((32)

C {xEX\ x^u(82)}, and a2>52, j32>82. Then choose y2ED such that

72z^a2, 72^|S2. Then each element of Eu(y2) is incomparable with

both u(8x) and u(52). Select 53^72. Continuing in the above manner

we obtain an infinite sequence of distinct elements u(8x), u(82),

u(83), ■ ■ ■ , which form a diverse subset of X.

Lemma 5. Let f be a net on A to X, let S be the range off, and suppose

that y is medial for f. If f(a) <y for all aEA, then y = l.u.b.(5).

Proof. Suppose that there exists zES* with z =£y. Since zE {E/(a) }*

for all aEA, we have zEQs- But yEQj', and hence we have a con-

tradiction.

The obvious dual formulation of the above lemma, and also that

of the following one, may be left to the reader.

Lemma 6. Let X be a poset of finite width, and let f be a net on A

with range (f)=SCX. Let y be an element of X such that y is the

l.u.b. of the range of every subnet of f. Then there exists an up-directed

set MCS such that y = \.u.h.(M).

Proof. Let k = width of X. Let us suppose that the lemma is false-

We shall proceed to obtain a contradiction by constructing a diverse

subset of X containing £ + 1 elements.

It is an easy consequence of Zorn's Lemma that every up-directed

subset of a poset is contained in a maximal up-directed subset. Let Mx

be any maximal up-directed subset of 5. By our assumption that the

lemma is false, we must have y ^l.u.b.(Mi). Hence there exists no

subnet of/with range contained in Mx. Therefore there exists aiEA

such that E(ax)CS — Mx. Now let us choose a maximal up-directed
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subset Mt of E(ai). Since by assumption there exists no subnet of

(f(a), aEAai) with range contained in M2, then there is an a2EA

with a2>ai and £(a2)C-E(«i) — M2. Now choose M3, a maximal up-

directed subset of E(a2), and continue the above process for k steps.

We obtain sets Mu M2, • • • , Mk; and E(ai), E(a2), • • • , E(ak), such

that (with the agreement that E(a0) =S)Mi is a maximal up-directed

subset of £(at_i) and E(at) EE(at-i) — M{, for i = 1, 2, • • • , k.

Next let us note that, for each i—1, 2, • • • , k, xE-E(a;-i) — Mt

implies (i) xCTzM*, and (ii) x%m for any mEMi. For if either (i) or

(ii) failed to hold, then the set M^J {x} would be an up-directed sub-

set of £(«i_i), thus contradicting the maximality of Mi. Thus for

each xEE(ai-i) — Mi there exists XiEMi such that x and x,- are in-

comparable.

Now choose an arbitrary element, which we denote by Xjfc+i, of

E(ak-i) —Mk- By the above paragraph, there exists XkEMk such that

X)t+i and Xk are incomparable. Also, since xkEE(ak-2) — Mk-i, there

exist aiEMk-i and a2EMk~\ such that ai and Xk are incomparable,

a2 and x*+i are incomparable. Let Xk-i be an element of Mk~i with

Xk-i^ai, Xk-i^a2. Then x*_i is incomparable with both xk and Xt+i,

so that the set {xk+i, xk, x*_i} is diverse. Continuing in this way, we

select elements bi, b2, b3 in Mk-2 such that bi and Xjt_i, b2 and x*, b3

and Xfc+i form incomparable pairs. Let xk-2 be an element of Mk-2

with Xk-2^bi (i = l, 2, 3). Then {x&+i, Xk, xk-i, xk-2\ is a diverse set.

It is clear that continuing the above construction leads to a diverse

set {xk+i, xk, ■ ■ ■ , Xi} of k + l distinct elements, contained in range

We now have the following theorem.

Theorem. 7/ X is a poset of finite width, then X possesses a unique

order-compatible topology. Furthermore, with respect to this topology,

X is a Hausdorff space.

Proof. In view of Lemmas 1 and 2, we need only to prove that the

topologies 3 and 3D are equivalent on X. Let K be any Dedekind-

closed subset of X; we shall show that K is tf-closed. Let/ be a net in

K with f(a)-+y in the interval topology. We may assume that

f(a)9^y for all a. We shall prove that yEK. By Lemma 4, there

exists no subnet g of / such that each element of range (g) is incom-

parable with y. Hence there exists a residual subnet of /, which we

take to be / itself, whose range consists of elements all of which are

comparable with y. Then there exists (i) a cofinal subnet u of / such

that y is an upper bound of range (u), or (ii) a cofinal subnet v of

/ such that y is a lower bound of range (v). Suppose that (i) holds
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(the other case is handled in the obvious dual manner). Since u con-

verges to y in the interval topology, y is medial for u (Lemma 3).

Let 5 = range (u). By Lemma 5, y = l.u.b.(5). Since every subnet of u

converges to y in the interval topology, Lemma 6 now applies; and we

conclude that there exists an up-directed set MCSCK such that

3> = l.u.b.(Af). Since if was assumed to be Dedekind-closed, we have

yEK, completing the proof.

It is natural to ask whether, in the above theorem, the hypothesis

that X is of finite width can be replaced by the weaker condition that

X contains no infinite diverse subset. However, we have not been

able to settle this question (not even in the special case when X is

assumed to be a lattice).
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