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1. Introduction. Let Xi • ■ • X( be a set of indeterminates and let

7r(X) =X;1X;, • • • X^ be a monomial of degree d in the X,-. Let PT de-

note the set of all monomials o-(X) =Xy; • • • Xy such that either q>d,

or q^d -with jh^ih for some h^q. S* will denote the set of all mono-

mials o-(X) of PT of degree d(cr) =q^d = d(w).

Generalizing the notion of a polynomial identity of a ring, Drazin

has introduced in [2] the idea of a ring with a pivotal monomial. He

calls a monomial 7r(X) a right pivotal monomial of a ring R if for every

substitution X; = x,£i?, x = l, 2, • • • , the element ir(x)=xtl • • ■ x;d

belongs to the right ideal generated by the elements a(x) —xjl • • • xy ,

where cr(X) ranges over all monomials of Pw. ll this condition holds

even if <r(X) is restricted to the set Sr, then 7r(X) is said to be a right

strongly pivotal monomial.

The main structure theorem of rings with pivotal monomials ob-

tained in [2] is that the right primitive rings with a right pivotal

monomial are the complete matrix rings Dq of all qXq matrices over

a division ring1 D, which extends a similar result for rings with

identities. The other extremity of types of rings leads naturally to

the question whether the structure theory of nil rings with an iden-

tity of [l] holds also for rings with a pivotal monomial. This ques-

tion is answered affirmatively for rings with a strongly pivotal mono-

mial in the first part of the present paper. This result leads to a num-

ber of applications; noted among them are the structure theory of

algebraic algebras of bounded index and a new proof of a result of

Levitzki [4, p. 201] that the nil subring of rings which satisfy the

minimum condition for right ideals are nilpotent.

In the second part of the present paper we try to generalize the

notion of a pivotal monomial to the utmost, while still keeping valid

the structure theory of primitive rings of [2]. This is carried out suc-

cessfully by introducing the notions of right-quasi-regularity modulo

Received by the editors September 16, 1957 and, in revised form, December 30,

1957.
1 The distinction between right primitive and left primitive rings has not been

done in [2, Theorem 4] which contains the above quoted result. But in the proof of

that theorem the author of [2] says that "we may regard R (the primitive ring) and

D as operating on Vfrom the right," which is true only if R is a right primitive ring.

Thus the result obtained in [2, Theorem 4] holds for right (or left) primitive rings

with a right (left) pivotal monomial. It is still an open problem, if the same is true

for right primitive rings with a left pivotal monomial.

635



636 S. A. AMITSUR [August

right ideals and Jacobson radicals modulo right ideals. These exten-

sions enable us to characterize completely the rings with the prop-

erty: that all their primitive representations are complete matrix

rings of bounded degree over division rings. Furthermore we show

that the right ideals of such rings have the same property.

We first extend slightly the idea of a ring with a strongly pivotal

monomial, and we shall use this term throughout this paper in the

following sense:

A ring R is a strongly (1) right PM-ring; (2) left PM-ring; (3) PM-

ring of degree d if there exists a monomial 7r(X) = X;, • • • X;d such that

for every substitution X,=Xj£i?, * = 1, 2, • • • the following holds

respectively:

(1) t(x)R C ]T <t(x)R; (2)      RirWQ'ZZ Ra(x);
■res, *eST

(3) Rw(x)R C  ]T Ra(x)R.

In view of the proof of [2, Theorem 2] we may assume that

7r(A) is linear in each X,-, hence without loss of generality we may as-

sume that 7r(X) =XiX2 • • • Xd.

The author is indebted to the referee for many simplifications of

notation which clarify immensely the present paper.

2. Nil subrings of strongly PM-rings. In what follows N(R) will

denote the union of all nilpotent ideals of a ring R.

Following the proof of [l, Theorem l] we show:

Theorem 1. If T is a nil subring of a strongly PM-ring R of degree

d, then T is locally nilpotent and TdC^N(R).

The proof is similar to the proof of [l, Theorem l] (see also [4,

p. 232]) with some minor changes, which are however important in

the proof of the present theorem. Because of these changes we pro-

duce here the complete proof.

Let n be an integer^d + \. Let Ai=Tn~iRTi for i=l, 2, ■ ■ ■ , d

and Ai = RTnR for i>d. We clearly have:

(1) AiAj C RT"R iori^j.

Choose XiEA, for t^l. It follows now that x^-Xi, ■ ■ ■ xipERTnR

if p>d, or if p = d and (ix, i2, ■ ■ ■ , id)^(l, 2, ■ ■ ■ , d). Indeed, in the

first case either some ij^ij+x and our results follow by (1), or ip>d

and our result follows by the definition of Aip; in the second case, if

(ii, ■ ■ ■ , id)^(i, 2, • • • , d) then either ij^ij+x for some j, or id>d

which by the same reasoning yields our result.
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Now if R is a strongly PM-ring of degree d, then by the remarks

preceding our theorem it follows that:

RxiXt • • ■ XdR C ^ Ra(x)R.

We have just shown that Rv(x)RQRTnR for aES*. On the other

hand, if Xj ranges over all elements of Ai, the elements Xi • • ■ x<j

range over all the elements of (^-^^(T^RT2) ■ ■ ■ (Tn~dRTd)

= (Tn~1R)dTd. Hence

(2) (RT^R)^1 C RW^RYTtR C RT"R.

Consider first the case that T is a nilpotent subring of R, and let

k he the minimum integer for which the ideal RThR is nilpotent;

clearly such an integer k exists. If k>d, then (2) implies RTk~1R is

also nilpotent, which contradicts the minimality of k. Hence k^d,

from which one readily deduces that TdCN(R).

Let T he a nilring and let tE T. Since the ring {t} generated by the

element t is nilpotent, it follows by the preceding case that tdEN(R)

= N. Consequently, the quotient ring (T, N)/N is a nil ring of

bounded index; hence it follows by [5] that (T, N)/N and, therefore,

also T are locally nilpotent. Let h, ■ ■ ■ , td he d elements of T. Since

T is locally nilpotent, the ring {ti, ■ ■ • , td) is nilpotent. It follows,

therefore, by the preceding case that {h, t2, ■ • ■ , id\dEN and in

particular ht2 • • • taEN. This being true for all ttET, implies that

TdClN; and, in fact, we have also shown that T is locally nilpotent.

The preceding result immediately implies:

Theorem 2. If R is a strongly PM-ring of degree d then:

(1) the nil subrings of R/N are nilpotent rings of index ^d. In par-

ticular,

(2) If Q is the nil radical of R then Qd<ZN. Hence, Q is also the lower

radical of R and Q = N2(R) (for definition see [4, Chapter VIII]).

(3) If T is a nilpotent subset2 of R, then Td generates a nilpotent ideal

in R.

It was shown in [2] that rings which satisfy the minimum condi-

tion for right ideals are strongly PM-rings; and since the radical

N(R) of such a ring R is nilpotent, we obtain the following result of

Levitzki (see e.g. [4, p. 201]):

Corollary 1. The nil subrings of a ring R which satisfy the mini-

mum condition for right ideals are nilpotent.

2 The extension of this result to subsets follows readily from the first part of the

proof of the preceding theorem. This was pointed out to the author by the referee.
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Further applications will be given in the last section.

Remark. Note the difference between Theorem 1 and the cor-

responding result for Pl-rings of degree d [l, Theorem l]. For PM-

rings of degree d, the bound of nilpotency modulo M(R) is [d/2];

whereas, for Pl-rings of degree d, the bound is d. Simple example of

matrix rings shows that in both cases the bounds are the best.

3. /-pivotal monomials. In the present section we shall say that an

(two sided) ideal P of a ring R is a right-primitive ideal in R, if the

quotient ring R/P is a right primitive ring. D will denote an arbitrary

division algebra and, as before, Dh will denote the ring of all hXh

matrices with coefficients in D.

The main feature of the right PM-rings R, is that they possess the

following property [2, Theorem 4]:

(Mf) for every right-primitive ideal P in R, the quotient ring

R/P ^ Dh,    with    h ^ d.

The converse, namely: that the property (Md) yields the existence

of a right pivotal monomial is not necessarily true. In the present

section we shall generalize the notion of a pivotal monomial, so that

we shall be able to characterize the rings possessing the property

(M„).
First we extend the notion of quasi-regularity: Let U be a right

ideal in a ring R. An element rER will be said to be right-quasi-

regular modulo U if there exists sER such that r+s — rsEU. A right

ideal V is said to be right-quasi-regular modulo U if it contains only

right quasi-regular elements modulo U.

Let J(U) be the set of all elements rER such that for all xER,

rx is right-quasi-regular modulo the right ideal U. Thus J(0) is the

Jacobson radical of R.

We shall also use the notation C(S) to denote the intersection of all

modular maximal right ideals of R containing a subset S of R.

Parallel to the proof of [4, Theorem 2, p. 9] we obtain that:

Theorem 3. C(U)=J(U) for every right ideal UCR.

We shall outline the proof here: if rEJ(U), then rx is not right-

quasi-regular mod U for some xER, and so the right ideal

(U, (1 —rx)R) does not contain rx.3 Hence, it is contained in a modu-

lar maximal right ideal U0. Clearly rxEUo and therefore, rEC(U)

C U0. This shows that C(U)QI(U).
To prove the converse, let rEJ(U). Let Ux be a modular maximal

right ideal containing U and let e be the left identity modulo Ux, i.e.,

* The proof holds also for rings without a unit.
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ex — xE Ui lor all xER- If rE Ui, then since Ui is maximal it follows

that e = rt+j for some tER and jEUi; whence, e(l— rt) =e(j — e)

— (j — e) +jE Ui. Now let 5 be the right-quasi-inverse of rt modulo U,

then clearly3 e(l-rt)(l-s)EUi, but since s+rt-rtsEUQUi it fol-

lows that e(s+rt — rts)EUi and consequently e = e(l—rt)(l—s)

+e(s+rt — rts)EUi which is impossible. Hence rEUi. This being

true for all Uu we have J(U)QC(U). q.e.d.

Remark. In the preceding definition and theorem we have used

right-quasi-regularity, but clearly a similar definition of left-quasi-

regularity modulo a left ideal will lead to a similar result for left

ideals; and one can prove that for two sided ideals Q of R, J(Q)

= C(Q) will be obtained independently of the right or left approach.

In fact one can show that J(Q)/Q = J(0), where J(0) is the Jacobson

radical of the quotient in R/Q.

We extend now the idea of a pivotal monomial in the following way:

We shall call a monimial 7r(X) a right J-pivotal monomial of a ring R

if for every substitution \i = XiER, ir(x)RQJ('2^<rep„o-(x)R), or

equivalently, by the preceding theorem, ir(x)r is right-quasi-regular

mod ^2a(x)R lor all rER* A ring R with a right /-pivotal monomial

(JPM) of degree d will he called a right JPM-ring of degree d.
Our first result is:

Theorem 4. A ring R possesses the property (Md) if and only if R

is a right JPM-ring of degree d, and then \d is a right J-pivotal mono-

mial of R.

Proof. Let 7r(X) =X,-, ■ • ■ \id be a right JPM of a ring R. Let P

be a right-primitive ideal in R. We may assume that R is a ring of

operators acting on the right on a Z>-vector space M such that R/P

is an irreducible ring of endomorphisms of M. We follow now the

proof of [2, Theorem 4] and we wish to show that R/P^Dh, h^d, or

equivalently that h = (M: D)^d. Suppose that (M:D)>d, so let

vo, Vi, ■ ■ ■ , vd be P-independent elements in M. Since R/P is an

irreducible ring of endomorphism of M we can find elements XiER

such that

Vi-ix, = SjiXj j = 1, • • • , d — 1 and vdx, = 0.

Then we have v0Tr(x)R = v0Xi1 • ■ ■ xidR = vdR^0 but Vo<t(x)R = 0 lor

all oEPt- Let U0= {r; v0r = 0}; then clearly Ua is a maximal modular

right ideal in R, and we thus have shown 7r(x)i?CL; (70, whereas,

<r(x)RCZU0. Hence clearly4 tt(x)R^J(J2^(x)R)EU0 by the pre-

ceding theorem, and this contradicts the definition of a JPM.

* Where the sum ranges over all crEPr.
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Conversely, let R be a ring satisfying (Md). We shall prove that \d

is a right JPM of R. First we prove that the rings Dh have the right

(and left) pivotal monomial \d. Indeed, for xEDh the sequence of

right ideals: xDh'Q.x2Dh~3 ■ ■ ■ ̂ xdDh^.xd+1Dh cannot contain more

than d different ideals, since the length of the composition series of

right ideals of Dh is h^d. Hence, we must have xd+lDh=xdDh, i.e.,

xdExd+lDh, which proves our assertion.6

We shall now show that tt(X) =Xf is a JPM of R. Indeed, let

\i — XiER and let U be a maximal modular right ideal containing4

J(^2a(x)R) and let P be the right-primitive ideal contained in U.

Since R/P^Dh, h^d, it follows that *fJ?C(J>(x)2?, P)Q(T,<r(x)R,
U). This being true for all U^J('J2<t(x)R) implies, by Theorem 5,

that xdxRQJ(Yta(x)R). q.e.d.

Actually our method yields more:

Corollary 2. If R satisfies (Md) then the right JPM of all matrix

rings Dh, h^d is also a right JPM of R.

Corollary 3. If R satisfies (Md) then xdEJ(xd+lR) for every xER-

4. Right ideals of JPM-rings. We intend to show in the present

section that:

Theorem 5. If U is a right ideal in a J PM-ring R of degree d, then

U is also a JPM-ring of degree g d.

To this end we shall need the following lemma:

Lemma 1. If R is a JPM-ring of degree d, then for every xER the

right ideal xdR is right-quasi-regular mod xd+2R.

The proof of this lemma follows the same methods which were

used in the proof of Theorem 4. Indeed, for every matrix ring Dh,

h^d, we have seen that xdD/,=xd+1Dh, xEDh, whence we also have

xdDh=xd+2Dh. By repeating now the last argument of the proof of

the preceding theorem, one obtains that xdRC.J(xd+2R) for xER,

and the rest follows now by Theorem 3.

We are now ready to prove Theorem 5.

Let xEU. The preceding lemma implies that xdR is right-quasi-

regular modulo xd+2R. From the facts that xdUQxdR and that xd+2R

C.xd+1U, one readily deduces that xdU is right-quasi-regular modulo

xd+1U. Our theorem will follow now by showing that for every xdr,

rEU, its right-quasi-inverse s modulo xd+1U belongs to U. Indeed,

since xdr+s — xdrs =xd+1tExd+1U, it follows that s=xd+it — xdr+xdrs

E U. This readily implies that Xd is a right JPM of U.

5 Compare with the proof of [2, Theorem 4].



1958] RINGS WITH A PIVOTAL MONOMIAL 641

It follows now by Theorem 4 that:

Corollary 4. If a ring R possesses the property (Md) then the right

ideals of R possess the same property.

In particular, if U is a right ideal of a semi-simple JPM-ring R

then it is known [4, Proposition 2, p. 10] that the right anihilator Uo

of U in U is the Jacobson radical of U. Hence, we obtain the following

extension of the property of matrix rings over division rings:

Corollary 5. If U is a right ideal in a semi-simple JPM-ring of

degree d then the quotient ring U/Uo is a semi-simple ring satisfying

(Md).

5. Concluding remarks and applications. In the preceding section

we have used the property of quasi-regularity to define a /-pivotal

monomial of a ring, but clearly many other properties can be used

and one will obtain other types of pivotal monomials, as the following

example shows:

Call a monomial ir(X) a(right) nilpotent-pivotal-monomial of a ring

R if for every substitution \i = XiER the ideal tt(x)R is a nilpotent

right ideal modulo the right ideal4 y,o-(x)i?. A ring with such a

monomial will be called an NPM-ring. It is not difficult to show that

an NPM-ring is a JPM-ring (to prove this one has only to assume

that the right ideal 7r(x)i? contains only nilpotent elements mod

^2o-(x)R). Furthermore, if one defines a strongly NPM-ring in the

obvious way one can show that the results of §2 will remain true

also for these rings.

We conclude this paper with an application of the theory of §2 to

algebraic algebras of bounded index, and with another result on PM-

rings.

First we note that

Theorem 6. // R is an algebraic algebra of index ^ d, then R is a

strongly right PM-ring of degree ^d.

Indeed, for rER let g(x) = xk(xm+aiXm~1 + ■ ■ ■ +am)=xkf(x),

with amy^0, be the minimal equation of r. Clearly rf(r) is a nil element

in R, hence rdf(r)d = 0 which clearly implies that rdRErd+lR.6 q.e.d.

Hence we obtain by [2, Theorem 4] and by the preceding results

that:

Corollary 6. (1) If R is a primitive algebraic algebra of index d

then R = Dd where D is an algebraic division algebra.1

6 The present simple proof is due to Dr. Drazin.

' Theorem 2 of [4, Chapter X, p. 237].
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(2) If R is an algebraic algebra of index ^ d and Q is the lower radical

of R, then R/Q is a subdirect sum of matrix rings Dq, with q^d; further-

more QdQN(R).

(3) If R is a semi-simple algebraic algebra (in the sense of Jacobson)

of degree q, then the nil subrings of R are nilpotent subrings of index ^q.

In the preceding section we have shown that the matrix ring Dq is

a strongly PM-ring of degree q, hence (3) of Theorem 2 implies that:

Corollary 7. The nil subrings of Dq are nilpotent, and the nilpotent

subsets T of Dq satisfy Tq = 0.

Another result on PM-rings is the following:

Theorem 7. If R is a PM-ring with a unit, then the right (left) in-

verses of the elements of R are also left (right) inverses.

Indeed, if uv = \ u, vER, then it was shown in [3] that if vuj^X,

then R contains nonzero elements Cy, i, j^ 1, satisfying CikCjh = 8kjCih.

Now set Xi = Ci2, x2 = c2i • ■ ■ xd = cdd+x, then X1X2 • • • xd = cxd+x but any

other product Xj1 • • • Xy =0. Hence, if R is a PM-ring we obtain

0 ^ cid+i E Rxx ■ ■ ■ xdR C £ Ra(x)R = 0,
•res,

which is a contradiction.
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