REFERENCES

- 1. A. B. Simon, Vanishing algebras, to appear in Trans. Amer. Math. Soc.
- 2. E. J. McShane, Images of sets satisfying the condition of Baire, Ann. of Math. vol. 51 (1950) pp. 380-386.
- 3. B. J. Pettis, On continuity and openness of homomorphisms in topological groups, Ann. of Math. vol. 52 (1950) pp. 293-308.
- 4. ——, Remarks on a theorem of E. J. McShane, Proc. Amer. Math. Soc. vol. 2 (1951) pp. 166-171.
- 5. Fred B. Wright, Semigroups in compact groups, Proc. Amer. Math. Soc. vol. 7 (1956) pp. 309-311.

THLANE UNIVERSITY

SIMPLE NODAL NONCOMMUTATIVE JORDAN ALGEBRAS

LOUIS A. KOKORIS

1. Introduction. Nodal algebras were defined by R. D. Schafer [4] and have also been studied by the author [2; 3]. A noncommutative Jordan algebra is an algebra $\mathfrak A$ over a field $\mathfrak F$ satisfying (1) the flexible law (xy)x=x(yx) and (2) the condition that $\mathfrak A^+$ is a Jordan algebra. That is, $\mathfrak A^+$ satisfies the identity $(x^2 \cdot y) \cdot x = x^2 \cdot (y \cdot x)$ where we have used the dot to indicate the product of $\mathfrak A^+$. The algebra $\mathfrak A^+$ is defined to be the same vector space as $\mathfrak A$ but with product $x \cdot y = (xy+yx)/2$ where xy and yx are products in $\mathfrak A$. Then $\mathfrak A$ is called nodal if it is finite dimensional, if $\mathfrak A$ has identity element 1, if $\mathfrak A$ can be written as a vector space direct sum $\mathfrak A = \mathfrak F 1 + \mathfrak A$ where $\mathfrak A$ is the subspace of nilpotent elements of $\mathfrak A$, and if $\mathfrak A$ is not a subalgebra of $\mathfrak A$.

Every known nodal algebra \mathfrak{A} has the property that \mathfrak{A}^+ is an associative algebra. The flexible algebras with \mathfrak{A}^+ associative have been described in [3]. In this paper we shall prove the following theorem.

THEOREM 1. Let \mathfrak{A} be a simple nodal noncommutative Jordan algebra of characteristic $\neq 2$. Then \mathfrak{A}^+ is associative.

Define \mathfrak{B} to be the subspace of \mathfrak{A} generated by all the associators in \mathfrak{A}^+ . That is, \mathfrak{B} is generated by elements of the form $(x \cdot y) \cdot z - x \cdot (y \cdot z)$ with x, y, z in \mathfrak{A} . The proof of the theorem will be made by showing that the ideal \mathfrak{C} of \mathfrak{A} generated by \mathfrak{B} is not all of \mathfrak{A} and since \mathfrak{A} is simple it will follow that $\mathfrak{C}=0$ and $\mathfrak{B}=0$. This is the desired result.

The original proof was not valid when the characteristic is 3. The author thanks Professor R. D. Schafer for suggesting a modification

Presented to the Society, January 28, 1958; received by the editors January 13, 1958.

which makes the proof simpler and also valid when the characteristic is 3.

2. The proof. Let x_1 , x_2 , x_3 , and y be any elements of \Re . Since \Re is nodal we have:

$$(1) x_i y = \lambda_i 1 + z_i.$$

The proof will depend on relation (8) of Schafer's paper [4] which is

(2)
$$(x_1 \cdot x_2)y = \lambda_1 x_2 + \lambda_2 x_1 + x_1 \cdot z_2 + x_2 \cdot z_1 \\ - (x_1 \cdot y) \cdot x_2 - (x_2 \cdot y) \cdot x_1 + (x_1 \cdot x_2) \cdot y.$$

In the proof it will also be necessary to use the fact that \mathfrak{N}^+ is a subalgebra of \mathfrak{A}^+ [1].

By (2) $(x_1 \cdot x_2)y$ is in \mathfrak{N} and it follows from (2) that $[(x_1 \cdot x_2) \cdot x_3]y = \lambda_3 x_1 \cdot x_2 + (x_1 \cdot x_2) \cdot z_3 + x_3 \cdot [\lambda_1 x_2 + \lambda_2 x_1 + x_1 \cdot z_2 + x_2 \cdot z_1 - (x_1 \cdot y) \cdot x_2 - (x_2 \cdot y) \cdot x_1 + (x_1 \cdot x_2) \cdot y] - [(x_1 \cdot x_2) \cdot y] \cdot x_3 - (x_3 \cdot y) \cdot (x_1 \cdot x_2) + [(x_1 \cdot x_2) \cdot x_3] \cdot y.$ Without bothering to simplify interchange subscripts 1 and 3 to get $[x_1 \cdot (x_2 \cdot x_3)]y = \lambda_1 x_3 \cdot x_2 + (x_3 \cdot x_2) \cdot z_1 + x_1 \cdot [\lambda_3 x_2 + \lambda_2 x_3 + x_3 \cdot z_2 + x_2 \cdot z_3 - (x_3 \cdot y) \cdot x_2 - (x_2 \cdot y) \cdot x_3 - (x_1 \cdot y) \cdot (x_3 \cdot x_2) + [(x_3 \cdot x_2) \cdot x_1] \cdot y.$ Using the notation $(a, b, c) = (a \cdot b) \cdot c - a \cdot (b \cdot c)$ for the associator of a, b, c in \mathfrak{A}^+ we have, upon subtracting the second relation from the first, $(x_1, x_2, x_3)y = (x_1, x_2, z_3) + (x_1, z_2, x_3) + (z_1, x_2, x_3) - (x_1 \cdot y, x_2, x_3) - (x_1, x_2 \cdot y, x_3) + (x_3 \cdot y, x_2, x_1) + (x_1, x_2, x_3) \cdot y.$

Now define the set \mathfrak{B} to be the subspace of \mathfrak{A} generated by the associators (a, b, c) with a, b, c in \mathfrak{A} and using the product of \mathfrak{A}^+ . We have proved the following lemma.

Lemma 1. Let $\mathfrak A$ be a nodal noncommutative Jordan algebra whose characteristic is not 2. Then $\mathfrak B\mathfrak N\subseteq\mathfrak B+\mathfrak B\cdot\mathfrak N$. Also $\mathfrak N\mathfrak B\subseteq\mathfrak B+\mathfrak B\cdot\mathfrak N$.

The last statement follows from the fact that if b is in \mathfrak{B} , n in \mathfrak{N} , then $nb = 2b \cdot n - bn$.

Let $\mathfrak{C}_0 = \mathfrak{B}$, $\mathfrak{C}_1 = \mathfrak{B} + \mathfrak{B} \cdot \mathfrak{N} = \mathfrak{C}_0 + \mathfrak{C}_0 \cdot \mathfrak{N}$, and in general $\mathfrak{C}_{i+1} = \mathfrak{C}_i + \mathfrak{C}_i \cdot \mathfrak{N}$. Equivalently, $\mathfrak{C}_{i+1} = \mathfrak{C}_i + \mathfrak{B}(R_{\mathfrak{D}}^+)^{i+1}$.

LEMMA 2. The product $(\mathfrak{B} \cdot \mathfrak{N})\mathfrak{N} \subseteq \mathfrak{C}_2$ and $\mathfrak{N}(\mathfrak{B} \cdot \mathfrak{N}) \subseteq \mathfrak{C}_2$. It follows that $\mathfrak{C}_1\mathfrak{N} \subseteq \mathfrak{C}_2$, $\mathfrak{N}\mathfrak{C}_1 \subseteq \mathfrak{C}_2$.

The proof follows from the flexible law as does (2) which was proved by Schafer. The linearized form of the flexible identity is

(3)
$$(xy)z + (zy)x = x(yz) + z(yx).$$

Add (yx)z+(yz)x to both sides of (3) to obtain the equivalent relation

(4)
$$(x \cdot y)z + (y \cdot z)x = yz \cdot x + yx \cdot z.$$

If x is in \mathfrak{B} , y, z in \mathfrak{N} , then $(y \cdot z)x$ is in $(\mathfrak{N} \cdot \mathfrak{N})\mathfrak{B} \subseteq \mathfrak{N}\mathfrak{B}$. By Lemma 1, $(y \cdot z)x$ is in \mathbb{C}_1 . The product yz is in $\mathfrak{F}1 + \mathfrak{N}$ so $yz \cdot x$ is in $\mathfrak{B} + \mathfrak{N} \cdot \mathfrak{B} = \mathbb{C}_1$. And $yx \cdot z$ is in $\mathfrak{N}\mathfrak{B} \cdot \mathfrak{N} \subseteq \mathbb{C}_2$. Therefore, $(x \cdot y)z$ is in \mathbb{C}_2 as desired.

LEMMA 3. The product $[\mathfrak{B}(R_{\mathfrak{N}}^{+})^{i}]\mathfrak{N}\subseteq \mathfrak{C}_{i+1}$ and $\mathfrak{N}[\mathfrak{B}(R_{\mathfrak{N}}^{+})^{i}]\subseteq \mathfrak{C}_{i+1}$. Or, equivalently, $\mathfrak{C}_{i}\mathfrak{N}\subseteq \mathfrak{C}_{i+1}$, $\mathfrak{N}\mathfrak{C}_{i}\subseteq \mathfrak{C}_{i+1}$.

Assume that $[\mathfrak{B}(R_{\mathfrak{N}}^{+})^{i-1}]\mathfrak{N}$ and $\mathfrak{N}[\mathfrak{B}(R_{\mathfrak{N}}^{+})^{i-1}]$ are in \mathfrak{C}_{i} . Take x in (4) to be in $\mathfrak{H} = \mathfrak{B}(R_{\mathfrak{N}}^{+})^{i-1}$, and y, z to be in \mathfrak{N} . Then $(y \cdot z)x$ is in $\mathfrak{N}\mathfrak{H} \subseteq \mathfrak{C}_{i}$, $yz \cdot x$ is in $\mathfrak{H} + \mathfrak{N} \cdot \mathfrak{H} \subseteq \mathfrak{C}_{i}$, and $yx \cdot z$ is in $(\mathfrak{N}\mathfrak{H}) \cdot \mathfrak{N} \subseteq \mathfrak{C}_{i+1}$. Thus $(x \cdot y)z$ is in \mathfrak{C}_{i+1} .

LEMMA 4. There exists a positive integer k such that $\mathfrak{C}_k = \mathfrak{C}_{k+1}$ and \mathfrak{C}_k is an ideal of \mathfrak{A} .

The set \mathfrak{B} is contained in \mathfrak{N} . Since \mathfrak{A}^+ is a Jordan algebra, \mathfrak{N}^+ is nilpotent. Consequently, $\mathfrak{B}(R_{\mathfrak{N}}^+)^{k+1} = 0$ for some k. For this k, $\mathfrak{C}_k = \mathfrak{C}_{k+1}$. By Lemma 3 $\mathfrak{C}_k \mathfrak{N} \subseteq \mathfrak{C}_{k+1} = \mathfrak{C}_k$ and $\mathfrak{N} \mathfrak{C}_k \subseteq \mathfrak{C}_k$.

The ideal \mathbb{G}_k is contained in $\mathbb{N} \cdot \mathbb{N} = \mathbb{N}_3$. Since \mathbb{N}^+ is a subalgebra of \mathbb{X}^+ , $\mathbb{N}_3 \subset \mathbb{N}$ and so $\mathbb{G}_k \subset \mathbb{N}$. If \mathbb{X} is a simple algebra, $\mathbb{G}_k = 0$ and thus $\mathbb{B} = 0$. This says that every associator in \mathbb{N}^+ is zero. Now if a, b, c are any elements in \mathbb{X} , $a = \alpha 1 + x$, $b = \beta 1 + y$, $c = \gamma 1 + z$ with x, y, z in \mathbb{N} . Then $(a \cdot b) \cdot c - a \cdot (b \cdot c) = (x \cdot y) \cdot z - x \cdot (y \cdot z)$ so every associator in \mathbb{X}^+ is an associator in \mathbb{N}^+ . This completes the proof of the theorem.

Any ideal properly contained in \mathfrak{A} is contained in \mathfrak{N} , hence is a nilideal and is contained in the radical of \mathfrak{A} . This implies the corollary which we state below.

COROLLARY. Let $\mathfrak A$ be a semisimple nodal noncommutative Jordan algebra of characteristic $\neq 2$. Then $\mathfrak A$ is simple and $\mathfrak A^+$ is associative.

REFERENCES

- 1. N. Jacobson, A theorem on the structure of Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. vol. 42 (1956) pp. 140-147.
- 2. L. A. Kokoris, Some nodal noncommutative Jordan algebras, Proc. Amer. Math. Soc. vol. 9 (1958) pp. 164-166.
 - 3. —, Nodal noncommutative Jordan algebras, Canadian J. Math. (to appear).
- 4. R. D. Schafer, On noncommutative Jordan algebras, Proc. Amer. Math. Soc. vol. 9 (1958) pp. 110-117.

WASHINGTON UNIVERSITY