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SIMPLE NODAL NONCOMMUTATIVE  JORDAN ALGEBRAS

LOUIS A. KOKORIS

1. Introduction. Nodal algebras were defined by R. D. Schafer

[4] and have also been studied by the author [2; 3]. A noncommuta-

tive Jordan algebra is an algebra 21 over a field % satisfying (1) the

flexible law (xy)x = x(yx) and (2) the condition that 31+ is a Jordan

algebra. That is, 21+ satisfies the identity (x2y) x = x2-(y x) where

we have used the dot to indicate the product of 2l+. The algebra 2I+

is defined to be the same vector space as 21 but with product xy

= (xy+yx)/2 where xy and yx are products in 21. Then 21 is called

nodal if it is finite dimensional, if 21 has identity element 1, if 21 can

be written as a vector space direct sum 2t=<51+9fc where 5ft is the

subspace of nilpotent elements of 21, and if 9t is not a subalgebra of 21.

Every known nodal algebra 21 has the property that 21+ is an asso-

ciative algebra. The flexible algebras with 2l+ associative have been

described in [3]. In this paper we shall prove the following theorem.

Theorem 1. Let 21 be a simple nodal noncommutative Jordan algebra

of characteristic 9^2. Then 2f+ is associative.

Define 33 to be the subspace of 21 generated by all the associators in

<Hl+. That is, 33 is generated by elements of the form (x-y) -z — x- (y-z)

with x, y, z in 9^. The proof of the theorem will be made by showing

that the ideal S of 21 generated by 33 is not all of 21 and since 21 is

simple it will follow that S = 0 and 33 = 0. This is the desired result.

The original proof was not valid when the characteristic is 3. The

author thanks Professor R. D. Schafer for suggesting a modification
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which makes the proof simpler and also valid when the characteristic

is 3.

2. The proof. Let xx, x2, x%, and y be any elements of 91. Since 21

is nodal we have:

(1) x,y = X,l + Zi.

The proof will depend on relation (8) of Schafer's paper [4] which is

(xx-x2)y = \xx2 + \2xx + xx-z2 + x2-zx

— (xx -y)-x2 — (x2 -y)-xx+ (xx ■ x2) ■ y.

In the proof it will also be necessary to use the fact that 9c+ is a sub-

algebra of 21+ [l].

By (2) (xi-x2)y is in 9c and it follows from (2) that [(xi-x2) x3]y

=X3xi • x2+(xi • x2) • z3+x3 • [Xix2+X2X1+Xi • z2+x2 • zi — (xi • y) ■ x2 - (x2 • y)

■xx + (xi-x2)-y] - [(xx-x2)-y]-Xi - (x3- y)-(xx ■ x2) +[(xx ■ x2) -x3]-y.

Without bothering to simplify interchange subscripts 1 and 3 to get

[xi-(x2'X3)]y=\ix3-x2-|-(x3-x2)-Zi-f-Xi- [X3x2+X2x3+X3-Z2+x2-z3-(x3-y)

■x2 —(x2y) x3 —(xi-y) • (x3-x2)-r-[(x3x2) Xi] y. Using the notation

(a, b, c) = (a-b)-c — a- (be) for the associator of a, b, c in 2l+ we have,

upon subtracting the second relation from the first, (xi, x2, x3)y

= («i, x2, zs) + (xi, z2, x3)+(zi, x2, x3) — (xx-y, x2, x3) — (xx, x2y, x3)

+ (x3-y, x2, xi) + (xi, x2, x3)y.

Now define the set 33 to be the subspace of 2f generated by the

associators (a, b, c) with a, b, c in 9c and using the product of 9c+.

We have proved the following lemma.

Lemma 1. Let % be a nodal noncommutative Jordan algebra whose

characteristic is not 1. Then 339?C33+33 9c. Also 9c33C33+33-9c.

The last statement follows from the fact that if b is in 33, n in 9c,

then nb = lbn — bn.

Let So = 33, Si=33+33-9c=e0+eo-9c, and in general (5^1 = ^
+ S,-9c. Equivalent^, 6i+1= S,+33(i?^),+1.

Lemma 2. The product (S3-9c)9cC:S2 and 9c(33 ■ 9c)Cg2. It follows
that Si9cC62, gcSiCSa.

The proof follows from the flexible law as does (2) which was

proved by Schafer. The linearized form of the flexible identity is

(3) (xy)z + (zy)x = x(yz) + z(yx).

Add (yx)z + (yz)x to both sides of (3) to obtain the equivalent relation

(4) (x-y)z + (yz)x = yz-x + yx-z.
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If x is in 33, y, z in 9c, then (y-z)x is in (9c-9c)33C9c33. By Lemma 1,

(y-z)x is in Si. The product yz is in gl + 9? so ysx is in 33 +9c-33 = Si.

And yxz is in 9133-9? CS2. Therefore, (x-y)z is in S2 as desired.

Lemma 3. The product [!8(R&y]<iflQS,+i and9l[%(R&y]QS,-+i. Or,
equivalently, S,-9tCS,-+i, 9cS,CS,+i.

Assume that ^(i^)'"1]^ and 9c[33(i?S)i_1] are in S,. Take x in

(4) to be in £ = 33(i?+)i~1, and y, z to be in 9c. Then (y-z)x is in

9c$£S,-, yz- x is in £+9c-£C <£,-, and yxz is in (9t£) -9ceSJ+i. Thus

(x-y)z is in S,+i.

Lemma 4. There exists a positive integer k such that St = St+i and St

is an ideal of 21.

The set 33 is contained in 9L Since 21+ is a Jordan algebra, 9c+ is

nilpotent. Consequently, 33(i?+0*:+1 = O for some k. For this k, St

= St+i. By Lemma 3 St9cCSt+i=St and 9c St C St.
The ideal St is contained in 9c • 9c • 9c = 9fC3- Since 9c+ is a subalgebra

of 2I+, 9c3C9c and so StC9c. If 21 is a simple algebra, St = 0 and thus

33 = 0. This says that every associator in 9c+ is zero. Now if a, b, c

are any elements in 21, a = al-|-x, b=pi+y, c = y\+z with x, y, z in

9c. Then (a-b) c — a- (b-c) = (xy) -z — x- (y-z) so every associator

in 2f+ is an associator in 9c+. This completes the proof of the theorem.

Any ideal properly contained in 21 is contained in 9c, hence is a

nilideal and is contained in the radical of 21. This implies the corollary

which we state below.

Corollary. Let % be a semisimple nodal noncommutative Jordan

algebra of characteristic t^-2. Then 21 is simple and 21+ is associative.
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