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1. Introduction. It is well known that if a coil of inductance L, a

resistor of resistance R, and a condenser of capacitance C are con-

nected in series with an external electromotive force E(t), the result-

ing flow of current x is determinable by elementary means. To be

considered here is the nonlinear problem arising from the replacement

of the linear resistor by a nonlinear resistor having an associated po-

tential drop h(x) where h'(x) is bounded between positive constants.

Such a resistor has been termed quasi-linear by Duffin [l]. Thus we

consider the equation

d2x      dh(x)       x
(1) L-+—^ + _ = £'(/).

dt2 dt C

We assume that h'(x) is continuous and that 0<a^h'(x) Sb. E(t) is

assumed real, periodic and absolutely continuous with E'(t) belonging

to L2, the class of Lebesgue measurable and integrable square func-

tions.

Duffin [l] has proved the existence of a periodic solution of (1)

and others have treated even more general types of nonlinearity in a

second order equation. The role of this paper then is to give a proof

which is different as well as constructive.

We shall employ some of the well known properties of Hilbert space

and Fourier series. Unless otherwise noted all sums on w are from

minus infinity to plus infinity. For two functions x and y the inner

product is (x, y) = (2ir)~1Jllrxydt where y is the conjugate of y. The

norm is given by ||x||2= (x, x). As already indicated L2(0, 2w) (briefly

L2 hereafter) will denote the Hilbert space of functions Lebesgue

measurable and integrable square in Q^t^2iv. For an infinite-tuple

x the norm is to be given by ||x||2= J^„ \xn\2. If x refers to the F. C.

(Fourier coefficients) of x then ||x|| =||xl|. In fact, use will be made of

the correspondence between elements of L2 and H, the Hilbert space

of sequences {x„} such that X)»|xn|2 converges [2, p. 15]. If

\\x — xn\\—>0 as n—>°o, the sequence {x„} is said to converge in mean

to x. We shall use the symbol = to refer to this normwise con-
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vergence. Ordinary or pointwise convergence will be indicated by the

usual equality.

We shall give several lemmas in order that the following arguments

may be self contained. These results are known or easily proven by

standard procedures.

Lemma 1. If X)» | iwx„ |2 converges then the L2 function y(t) —

y^» inxneint is the derivative of x(t) = 23» xneint almost everywhere.

Furthermore the latter series is absolutely and uniformly convergent and

x(t) is absolutely continuous.

Lemma 2. Let xk(t)= ]£„ xfeini and xk = (xf, x{*\, x[k\ • • • )• Let

x=(xo, *-ii xx, ■ • ■ ) be such that ||x — x^H —>0 as &—>=°. Then there

exists an x(t)EL2 such that  ||x(0 — xa(2)||—>0  as &—><*>   and x(t)—
Zy.  pint

Lemma 3. Given the differential equation d2x/dt2+a(dx/dt)+@x

=f(t) where a, /3 are constants, f(t+2ir) =f(t), and f(t)EL2. Let L(n)

= j3 — n2+ina be nonzero for all integers n. Let xn(t)=An/L(n)eini

where the An are the F.C. of f(t). Then the series ^,n xn(t) converges

uniformly over the infinite interval to a function x(t), periodic of period

2w, such that x'(t) is absolutely continuous and which satisfies the given

differential almost everywhere.

2. Description of the iteration. Before proceeding with a descrip-

tion of the iteration technique we rewrite (1) in a somewhat different

form. We change the scale of the independent variable so that the

forcing term shall have period 27r. Substituting h(x)=bf(x) gives

0<p^f'(x)^l where p = a/b. Equation (1) becomes

d2x df(x)
(2) 7rJ+a^T + 0x = E'{t)

where a = b/L and /3 = 1/ZC. This equation may be written

d2x dx d T (x-f(x)) "I
(3) —+a — + 0x = —   E(t) -a(p-l)\--\    .

dt2 di dt\_ { 1 - p ) J

The restriction on/'(x) may be written

1 - f'(x)
0 <-g 1

1-p

and if we let

x — f(x)
e(x) =->£W        1 - p
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then Ogg'(x) ^ 1. Also let y=a(p — 1). Then, since a^O, |-y| < \a\.

The differential equation and accompanying restrictions now become:

d2x dx d  r ,
(4) — + <* — + Px = — [E(t) - yg(x)]

dtL dt dt

where (a) a, P^O and \y\ < | a\,

(h) g'(x) is continuous and 0^g'(x)^l,

(c) E(t) is periodic (of period 27r), real, absolutely continuous and

E'(t)EL2.

The solution of (4) is to be approximated by a sequence of func-

tions {xfc(;)} determined as follows: x0(t) is the periodic solution of

the linear differential equation resulting from the deletion of the

nonlinear term g(x) from the right member of (4). Now x0(t) is sub-

stituted into the right member of (4) and xx(t) determined as the

periodic solution of this linear equation. In general, the (&-fT)st

approximation is the periodic solution of

doc cLjc cl
(5) —- + a — + px = — [E(f) -yg(xk(l))].

dt2 dt dt

In order to regard this iteration from a different viewpoint, sup-

pose that both Xk(t) and g(xk(t)) have the following Fourier series

representations:

(6) xk(l) = £ xVe™ (k = 0, 1, 2, • • ■ ),
n

g(xk(t)) = E gnk)eint,

(7)
gV = (g(xk(t)), e^) (k = 0, 1, 2, • ■ • ),

E(t), being absolutely continuous, is of bounded variation and has the

representation

(8) E(t) = £ £„<*»«.
n

If the series expressions for Xk+i(t), g(Xk(t)) and E(t) are formally

substituted into (5) and coefficients of corresponding harmonics are

equated, the result is

(9) xn      =--———■ (n = 0, +1, +2, • • •)•
p — nz + ma

Now the iteration may be carried out in the following way. As the

beginning approximation take
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to; inEn _
xn    =-   (n = 0, +1, +2, • • • )

j3 — n2 + ina

(for these are the F.C. given by (9) with g deleted). Then (7) with

k = 0 is used to calculate the g^0). (9) is now used to calculate the F.C.

x{n of xx(i). A repetition of this procedure gives successive approxi-

mations.

Since the infinite-tuple of F.C. of xk(t) belongs to the Hilbert space

H, this iteration may be regarded as a successive transformation in

the space H. Thus, if the infinite-tuple xk is defined by xk = (x'~Q),

**, x(x*\ x%, ■ ■ ■ ), the transformation F(xk) is given in accordance

with (9) by

w   ^        ^  -i(E-i-yg-i)     i(Ei - ygi  )
F(xk) =   0,-> ->

13 - I - ai 0 - 1 + ai
(10)

-2i(E-2 - yg-2)

/3 - 4 - 2ai

Then the iteration is described by the relation

(11) xk+i = F(xk) (k = 0, 1, 2, • • • ).

In the following we shall justify the heuristic procedures of this

section.

3. Proof of convergence. The existence of the iterates xk(t) is

argued by induction. According to Lemma 3 a periodic x0(t) exists.

Suppose that xk(t) is periodic and such that xk (t) is absolutely con-

tinuous. g'(xk(t)) being continuous is measurable as well as bounded

and belongs to L2. Thus the time derivative of g(xk(t)) belongs to L2

and so also does the right member of (5). Now by Lemma 3, there

exists a periodic function xk+x(t) such that x't+i(t) is absolutely con-

tinuous and which satisfies (5) almost everywhere. The F.C. of the

right member of (5) are in (En—yg^) since g as well as E(t) is ab-

solutely continuous [3, p. 23]. Hence, by Lemma 3, the F.C. of

xk+i(t) are given by (9). We note also that since it has a continuous

derivative, g(xk(t)), as well as xk(t), is absolutely continuous and

therefore the series representations (6) and (7) are justified. It is also

easily argued by induction that all xk(t) are real.

Let xr(t) and x,(t) be any two real, absolutely continuous functions

whatsoever with x' (t) and x', (t) belonging to L2. Substitute these

functions into the right member of (4). Then periodic solutions, say
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yr(t) and y„(t) respectively, exist whose F.C. are given by

<r)      m(En — ygn ) ,      (,)      tn(En - ygn )
yn    = -:-   and   yn    = -;- •

P — n2 + ina P — n2 + ina

According to (10) these relations may be written yr = F(xr) and

yB = F(xe).

In view of the bounds on g', the law of the mean gives

|  g(%r)   —  g(Xs) |2   ^   (Xr  —   Xs)2.

Therefore

(12) ||g(*r)   —  g(Xs)\\2   ^   ||xr —   X,||2.

From (10) one has

2   2 I      (r) (j) I2

ii w - wii' - e *7'g; ~ g\
„     (j8 — w2)2 + »2a2

|     (r)            (•) 12

= 7    A- (» 7^ 0)

»    (0/n - «)2 + a2

2       2—,,      (r) (,) 12

S 7 /«    2^   I  gn      ~  gn     I
n

= y2/a2\\g(xr) -g(x,)\\2.

Together with (12) this result gives

(13) ||F(xr) - F(x.)\\  g   | y/a\\\xr ~ x.\\  =   | y/a\ \\xr - xs\\.

From (11), ||x2 —xi|| =||7;'(xi) —F(x0)|| is obtained and then (13) gives

||x2 — xi|| ^ \y/a\ \\xi — xo||. Now assume that

(14) ||x*+i - x*|| ^   | -y/« |*[|xi - x0||.

Again (11) and (13) give ||x4+2 — x*+i|| ̂  \y/a\ ||x*+i — x*ll- But in view

of the assumption (14) this is j|xfc+2 — xfc+1|| ̂  | -y/«| i+1||xi — x0||. Hence

by induction on k, (14) is true for all positive integers k. Consider

now \xk+p — Xk\\ where p is any positive integer. Using (14) and letting

K = \ xi — x0|| gives

||x*+j, - x*|| g \\xk+p — xk+p-i\\ + ||x*+p_i — xA+p_2|| + • • • + ||x*+i — x*||

£K\y/a I*"1*"1 + K\y/a |*+*-2 + • • • + K \ y/a |*

K .
-~.—i—n I y/a\"-

1 —   [ y/aI
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Since j-v| <|a|, ||xt+p — x*||—>0 as &—>»; that is {xk\ is a Cauchy

sequence in H. Since H is complete there exists an xEH such that

||x —Xjfc||—»0 as &—>«>. Lemma 2 gives x(t) = limk^x xk(t) in the space L2

where F.C. of x(t) are given by x. That this convergence is indeed

pointwise will be noted in the next section.

4. Verification of the solution. We shall show that the limit func-

tion x(t) satisfies (4). Equation (9) yields

I   .       (*+!>) .       (ft) 12 — M27 2.      (k+p-l) (ft-l)|2

I mxn       — mxn   I   =-:—    \ gn — gn       |
/3 — n2 + ma

.    ,,|      (t+p-l) (*-l) 12

^   M \  gn -   gn |

where M is a constant independent of n. Summing on n and using

(12) gives

X | inxn   '   — inxn   \   ^ M\\g(xk+P^i(t)) — g(xk-i(t))\\
n

g M\\xk+p-i(l) - »*_i(/)||2

and establishes the convergence of the series on the left. Hence,

according to Lemma 1, this series is ||x£+p(£) — xk (t)\\2. It follows,

since \xk(t)} is a Cauchy sequence, that {xk (t)} is also a Cauchy se-

quence in L2 and therefore has a limit, say u(t), belonging to L2.

For 0:2£:S2x one may write

/. ( n t i|2 /i !i r     (i I -|2

xi(s)ds-   I    m(s)Js     =  l/2ir | I    (**' (s) - «(*))ds     dt

^ i/2tt r  r dji r (**'(*)-mw)^* <#

/. 2ir    /» 2ir

I     (*4'(j) - u(s))2dsdt = iir2\\xk'(l) - u(t)\\2.
o    Jo

Thus

lim   I    a;* (s)rf5 =  I   u(s)ds.

The xk'(s), and hence w(s), have zero average over Q^t^2ir. The

right member is then periodic as well as absolutely continuous and

may therefore be written as X^n f„eint where X» \nM2 converges

[3, p. 23]. Furthermore xk(t) is absolutely continuous so the left

member is lim*^ (xk(t) — xk(0)). Now let C = limi,00 xk(0) and write
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x(t) - (c + £ fnefA

II II II f
^ \\x(t) — xk(t)\\ + \\xk(t) — xk(0) —   I    u(s)ds

•J 0

u(s)ds- 'Efneint\\.
0 — m

As m and k approach infinity the norms in the right member approach

zero and we have x(t) — C-\- ^„/„e'*'. Since the F.C. of x(t) have been

shown to be x„, one now has £» \in x„|2 convergent and Lemma 1

gives v(t) = ^n in xneint with x'(t)=v(t) almost everywhere where

v(t), and hence x'(t), belong to L2. It is also easily deduced that

v(t) and x'(t) are equivalent to u(t).

Substitute x(t) into the right member of (4). Since x'(t)EL2 the

right member belongs to L2, and according to Lemma 3 a periodic

solution, say x*(t), exists. Thus

d2x*(t) dx*(t) d   .
—-fi + a —— + px*(t) = - [E(l) - yg(x(t))\

or dt at

almost everywhere, and consequently, x* = F(x). Now (13) may be

applied to give \\F(xk) — F(x)\ g \y/a\ \\xk — x||. But F(xk)=xk+i and

||xfc — xj| —>0 as k—>cc. Thus limA<IC xk+i = F(x) or x = F(x). Hence

x*=x or x*(t)=x(t) almost everywhere. Replacement of x*(t) by

x(t) in the identity above verifies that x(t) is a solution of (4) almost

everywhere.

To show that the convergence is pointwise consider (6) and the

relation x(t) = 2_)„ xneint which is valid since x(t) is absolutely con-

tinuous.   Use  of  the  Schwarz  inequality  and  the  convergence  of

/,i |«x„|2 and 2-,n |«x*}|2 shows that these series are absolutely

and uniformly convergent. One may now write

| x(t) — xk(t) |   =    £ (x„ — x„  )e,n

n

<    VI ik) I
= / J    I       n *^n      |

= [ 2-< '/«  )    I   JL I nxn — nxn   |   1

= (lV»2)    \\x'(t) -x£(t)\\

where the sums need not be taken over w = 0 since Xo°=0 for all k.
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The norm on the right approaches zero as &—><». Furthermore, since

it is independent of t, the convergence of xk(t) to x(t) is uniform as

well as pointwise.

5. Remarks. Equation (2) was written in the form (3) by adding

a linear term to both members. It is interesting to note the conse-

quences if this tactic is not employed. If (2) is attacked directly one

must assume /S^w2 for all integers n so existence of the iterates is not

destroyed by the presence of resonance type terms. Furthermore,

even with this assumption, the proof of convergence demands a

further restriction on the parameters a and /3.

The author has applied these techniques to the matrix differential

equation corresponding to a network containing quasi-linear resistors

and has proven convergence subject to certain restrictions on the

circuit parameters.
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