ON POWERS OF NON-NEGATIVE MATRICES

JOHN C. HOLLADAY AND RICHARD S. VARGA¹

Let $A = ||a_{i,j}||$ be an $n \times n$ matrix consisting of non-negative elements. It is well known [1, p. 463] that A is *primitive* if and only if, for some positive integer n, A^n has all its elements positive. One needs to know only this property of primitive matrices to understand this paper. If A^k is positive (i.e. has all its elements positive), then A^h is also positive for all integers h > k [1, p. 463]. Letting A be primitive, we shall define $\gamma(A)$ as the smallest positive integer h such that A^h is positive.

Wielandt [2, p. 648] stated without proof the inequality³

$$\gamma(A) \le n^2 - 2n + 2,$$

and gave an example to show that $\gamma(A)$ could equal n^2-2n+2 . In the special case that all the diagonal elements of A are positive, Wielandt [2, p. 644] showed that one may obtain the better bound

$$\gamma(A) \le n - 1.$$

In this paper, we show that when there are one or more positive diagonal elements of A (or of one of its low order powers), bounds may be found for $\gamma(A)$ which are better than (1), although not necessarily as good as (2). We shall also give an easy proof of (1).

In our discussion, we shall assume that the matrix A is non-negative and primitive. Let J be the set of positive integers one through n. For L a subset of J, define $F^0(L) = L$ and, by induction, for h a positive integer, define $F^h(L)$ as the set of all $i \in J$ such that for some $j \in F^{h-1}(L)$, $a_{i,j} > 0$. For h a non-negative integer, and $j \in J$, define $F^h(j)$ as $F^h(L)$ where L is the set containing j and only j. We remark that, for h a positive integer, the element of A^h in the ith row and jth column is positive if and only if $i \in F^h(j)$.

LEMMA 1.
$$F(J) = J$$
.

Received by the editors January 16, 1958.

¹ Work done under the auspices of the A.E.C.

² One may also use Lemma 1 of this paper.

³ Others, in examining the fundamental properties of non-negative primitive matrices have indirectly obtained bounds for $\gamma(A)$. For example, as pointed out by Wielandt [2, p. 647], Frobenius [1, p. 463] indirectly obtained the bound $2n^2-2n$, while Herstein [3, p. 20] indirectly obtained the bound n^n for $\gamma(A)$.

⁴ This obviously implies that A is irreducible. See [1, p. 463].

Proof. For $j \in J$, $J = F^{\gamma(A)}(j) \subseteq F^{\gamma(A)}(J) = F[F^{\gamma(A)-1}(J)] \subseteq F(J) \subseteq J$.

LEMMA 2. If L is a proper subset of J, then F(L) contains some element not in L.

PROOF. If not, then $J \supseteq L \supseteq F(L) \supseteq \cdots \supseteq F^{\gamma(A)}(L) = J$ which contradicts $J \neq L$.

COROLLARY. If $h \leq n-1$, then $\{j\} \cup F(j) \cup \cdots \cup F^h(j)$ contains at least h+1 elements.

PROOF. This is obviously true for h = 0. Using mathematical induction, assume it is true for some $0 \le h \le n-1$. Set $L = \{j\} \cup \cdots \cup F^h(j)$, and apply Lemma 2.

We remark that, given $j \in J$, the set of integers h such that $j \in F^h(j)$ is a semigroup. Therefore, properties described below may be easily observed by observing the first few iterates of A.

LEMMA 3. Let k be a non-negative integer, and $j \in J$. For $h \ge k$, let $j \in F^h(j)$. Then, $F^{n-1+k}(j) = J$.

PROOF. The corollary above implies that $\{j\} \cup \cdots \cup F^{n-1}(j) = J$. For each $0 \le h \le n-1$, $j \in F^{n-1+k-h}(j)$, and so $F^h(j) \subseteq F^{n-1+k}(j)$. Therefore, $J = \bigcup_{n=0}^{n-1} F^h(j) \subseteq F^{n-1+k}(j) \subseteq J$.

THEOREM 1. Let k be a non-negative integer. Let there be at least d>0 elements j of J such that for $h \ge k$, the jth diagonal element of A^h is positive. Then, $\gamma(A) \le 2n - d - 1 + k$.

PROOF. The corollary above implies that, for each $j \in J$, there exists $0 \le h \le n-d$ such that $F^h(j)$ contains at least one of the d elements described above. Then,

$$J \supseteq F^{2n-d-1+k}(j) = F^{n-d-h}\{F^{n-1+k}[F^{h}(j)]\} \supseteq F^{n-d-h}(J) = J.$$

COROLLARY. Let at least d>0 of the diagonal elements of A be positive. Then, $\gamma(A) \leq 2n - d - 1.5$

THEOREM 2. Let h be a positive integer, and let $A + A^2 + \cdots + A^h$ have at least d > 0 of its diagonal elements positive. Then, $\gamma(A) \leq n - d + h(n-1)$.

PROOF. Let j be one of the d elements such that $j \in F^p(j)$ for some $p, 1 \le p \le h$. Then, if we substitute 0 for k, and F^p for F, we may apply Lemma 3, and conclude that $F^{(n-1)p}(j) = J$. Choose arbitrarily $j' \in J$. Then, the corollary to Lemma 2 implies that there exists an l,

⁵ If all the diagonal elements of A are positive, then d=n, and the inequality of the corollary reduces to Wielandt's result (2).

 $\begin{array}{l} 0 \leq l \leq n-d \text{ such that } F^l(j') \text{ contains at least one of these } d \text{ elements.} \\ \text{Therefore,} \quad J \supseteq F^{n-d+h(n-1)}(j') = F^{n-d-l+(h-p)(n-1)} \left\{ F^{p(n-1)} \left[F^l(j') \right] \right\} \\ \supseteq F^{n-d-l+(h-p)(n-1)}(J) = J, \text{ since } n-d-l+(h-p)(n-1) \geq 0. \end{array}$

COROLLARY. Let A be non-negative and positively symmetric in that $a_{i,j} > 0$ if and only if $a_{j,i} > 0$. Then, $\gamma(A) \leq 2(n-1)$.

PROOF. A^2 has all its diagonal elements positive. Now, apply Theorem 2.

THEOREM 3. $\gamma(A) \leq n^2 - 2n + 2$.

PROOF. Given $j \in J$, consider the case where $\{j\} \cup \cdots \cup F^{n-2}(j) \neq J$. Then, for $1 \leq h \leq n-1$, $F^h(j)$ contains exactly one element not in $\{j\} \cup \cdots \cup F^{h-1}(j)$. Let p be the smallest positive integer such that $F^p(j)$ contains at least two elements. Then, there exists an integer m < p such that m > 0 (unless p = 1, in which case m = 0) and such that $F^m(j) \subseteq F^p(j) = F^{m+(p-m)}(j) \subseteq F^{m+2(p-m)}(j) \subseteq \cdots$. Lemma 2 implies that $F^{m+(n-1)(p-m)}(j) = J$. But $p \leq n$ implies that

$$m + (n-1)(p-m) = p + (n-2)(p-m) \le n^2 - 2n + 2.$$

If $\{j\} \cup \cdots \cup F^{n-2}(j) = J$, then there exists an integer h, $0 \le h \le n-1$, such that $F^0(j) \subseteq F^h(j) \subseteq \cdots \subseteq F^{(n-1)h}(j) = J$. But, $(n-1)h \le n^2 - 2n + 1 < n^2 - 2n + 2$. This completes the proof.

Let A and B be two non-negative primitive matrices such that if $A = ||a_{i,j}||$, and $B = ||b_{i,j}||$, then $a_{i,j} > 0$ implies that $b_{i,j} > 0$. It is clear that $\gamma(A) \ge \gamma(B)$. Furthermore, if B has many positive elements for which there are no corresponding positive elements of A, then one would expect to have $\gamma(A) > \gamma(B)$. We shall show that when there are many positive off-diagonal elements of a non-negative primitive matrix, some of the preceding inequalities may be improved.

Given a positive integer j, $1 \le j \le n$, define X(j) as the number of elements $a_{i,j}$, $i \ne j$, for which $a_{i,j} > 0$. Then, the corollary to Lemma 2 implies that $X(j) \ge 1$ whenever n > 1, for all j. Whenever X(j) > 1, we may improve the result of the corollary to Lemma 2 by observing that if $1 \le h \le n - X(j)$, then $\{j\} \cup F(j) \cup \cdots \cup F^h(j)$ contains at least h + X(j) elements. If we use this result in the proofs of Lemma 3 and Theorem 1, we obtain the following improvements.

LEMMA 4. Let k and j be as in Lemma 3. Then, $F^{n-X(j)+k}(j) = J$.

THEOREM 4. Let A be as in Theorem 1. Let X_1 be the minimum of X(j) for the d elements $j \in J$. Let X_2 be the minimum of X(j) for the remaining n-d elements $j \in J$. Then,

$$\gamma(A) \le 2n - d - X_1 - \min[X_2 - 1; n - d] + k.$$

COROLLARY. Let d>0 of the diagonal elements of A be positive. Then,

$$\gamma(A) \leq 2n - d - X_1 - \min[X_2 - 1; n - d].$$

A similar improvement may also be obtained for Theorem 2.

For any non-negative irreducible matrix, we may define the (irreducible) order of A, denoted by $\Lambda(A)$, as the smallest positive integer h such that $I+A+A^2+\cdots+A^h$ is positive, or equivalently, $\{j\}\cup\cdots\cup F^h(j)=J$ for each j. By definition of irreducibility, it is clear that $\Lambda(A)\leq n-1$. If $\Lambda(A)$ is less than n-1, and the value of $\Lambda(A)$ is known, many of the preceding inequalities may be improved. We summarize how the order of A may be used to sharpen respectively the results of Lemma 4, Theorem 4, and its corollary above. These results are respectively:

$$(3) \quad F^{\min[n-X(j); \Lambda(A)]+k}(j) = J,$$

(4)
$$\gamma(A) \leq \min [n - X_1; \Lambda(A)] + \min \{n - d - \min [X_2 - 1; n - d]; \Lambda(A)\} + k,$$

(5)
$$\gamma(A) \leq \min[n - X_1; \Lambda(A)] + \min\{n - d - \min[X_2 - 1; n - d]; \Lambda(A)\}.$$

BIBLIOGRAPHY

- 1. G. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 1912, pp. 456-477.
- 2. Helmut Wielandt, *Unzerlegbare*, nicht negativen Matrizen, Math. Zeit. vol. 52 (1950) pp. 642-648.
- 3. I. N. Herstein, A note on primitive matrices, Amer. Math. Monthly vol. 61 (1954) pp. 18-20.

Los Alamos Scientific Laboratory of the University of California and Westinghouse Electric Corporation, Bettis Plant