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It is known that many of the classes of simple Lie algebras of prime

characteristic of nonclassical type have simple infinite-dimensional

analogues of characteristic zero (see, for example, [4, p. 518]). We

consider here analogues of those algebras which are defined by a

modification of the definition of a group algebra. Thus we consider

analogues of the Zassenhaus algebras as generalized by Albert and

Frank in [l].

The algebras considered are defined as follows. Let G be a nonzero

abelian group, F a field, g an additive mapping from G to F, and fan

alternate biadditive mapping from GXG to F. We index a basis of

an algebra over F by G, denoting by ua the basis element correspond-

ing to a in G, and define multiplication by

(1) uaue = {f(a, P) + g(a - 0)} ua+li.

We designate this algebra by L(G, g,f). We shall determine necessary

and sufficient conditions on/and g for the algebra L(G, g, f) to be a

simple Lie algebra. We shall then consider the case in which L(G, g,f)

is a simple Lie algebra of characteristic zero. This will be seen to

imply that G is torsion-free. The derivations and locally algebraic

derivations of L(G, g, f) will be determined in this case. Using these,

we shall show that any one of these simple Lie algebras L(G, g, f)

of characteristic zero determines the group G up to isomorphism and

determines the mappings g and / up to a scalar multiple.

Our proof of the simplicity of L(G, g, f) and determination of the

derivations of L(G, g,f) are also valid when Ehas prime characteristic

p and G is an elementary abelian ^-group. However in that case our

method for showing that L(G, g, f) essentially determines G, g and /

cannot be used—indeed, Ree showed in [4] that all Zassenhaus alge-

bras of dimension pn over F are isomorphic.

When the torsion-free abelian group G has rank one, the simple

algebra L(G, g, f) over F, of characteristic zero, is isomorphic to the

algebra of derivations of the group algebra of G over F. Thus the

group algebra of a torsion-free abelian group of rank one determines

the group. However this is a special case of a result that follows from

Higman's determination of the units of group algebras in [2].

Presented to the Society January 29, 1958, under the title of Relations between

torsion-free abelian groups and certain Lie algebras; received by the editors March 10,

1958.

613



614 RICHARD BLOCK [August

2. Simplicity. It was shown by Albert and Frank in [l, p. 132]

that when g(a) =0 for all a in G then the algebra L(G, g, f) is a Lie

algebra and contains the one-dimensional ideal spanned by Mo, and

that when g does not vanish identically then L(G, g,f) is a Lie algebra

if and only if there is an (additive) mapping h on G to F such that

(2) f(a, p) = g(a)h(P) - g(P)h(a)

for all a and p in G.

Now suppose that g does not vanish identically and that an h is

given such that (2) holds. We seek to determine conditions under

which L(G, g, f) will be simple. If g(y) =h(y) =0 for some nonzero y

then in case y has finite order q, all elements of the form

i-i

j-0

span a proper ideal, while if y has infinite order, all elements of the

form ua+ua+y span a proper ideal. Also if there is an element 5 in

G such that g(d) =0 and h(8) =2 (in particular for characteristic two,

if 5=0) then all ua with a^ — 5 span a proper ideal of L(G, g,f).

We therefore suppose that there is no nonzero 5 in G such that

g(8) =0 and h(8) =0 or 2, and that the characteristic is not two. Thus

there is no 5 in G such that g(8) =0 and h(5) = +1. Also, by (2), either

the kernel of g is zero or / is nonsingular.

The length X(x) of an element x = JZ/s a&ue ot L(G, g, f) denotes the

number of nonzero coefficients ap in x, and P is said to be x-admissible

if as?^0.
Now, under the above conditions, let Af be a nonzero ideal of

L(G, g, /), x a nonzero element of M of minimal length, and suppose

X(x)>l. If g(a)=0 for some x-admissible a, then with y such that

g(y) ^0, we haveX(xwT) gX(x),/(a,7) +g(a-y) = -g(y) [h(a) +1 ]^0

and a+y is (xwT)-admissible. Hence we may assume that g(P) ^0 lor

some x-admissible p. Now if g(a)=0 for some x-admissible a then

xua^0 since f(p, a)+g(p-a) =g(p) [h(a) + \}^0, but X(xm«)<X(x),

a contradiction. Hence for every x-admissible P, g(P)^0. Take an

x-admissible a and let y = xw_„. Then 0 is y-admissible since/(a, —a)

+g(ct) — g(—a) =2g(a)9^0, so y?^0 and X(y) =X(x). Thus P — a is y-

admissible for every x-admissible P, and since 0 is y-admissible,

g(P — a) =0 for every x-admissible p. Now if a and P are x-admissible

and a^P, then since X(xm<j) <X(x), we have xms = 0, 0=/(a, P)

+g(a-P)=g(a)[h(p-a)], so g(a~P) =h(a~P) =0 and a = /3, a con-

tradiction.

Hence X(x) = 1 and M contains some ua. ll g(a)=0 then for /? such
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that g(j3)^0, M contains uaua = — g(/3) [h(a)+l]ua+a^0, so M con-

tains a uy with g(y) ^0. Now if /3 is such that g(/3) =0 then M con-

tains us, since uyU-y+B=g(y) [h(@)+2]ua?£0. In particular Af con-

tains Mo and so also any ua with g(a)?*0, since u0ua= —g(a)ua^0.

Therefore M = L, and we have proved the following theorem.

Theorem 1. The algebra L(G, g, f) defined by (1) is a simple Lie

algebra if and only if the characteristic is not two, g does not vanish

identically and there is an additive mapping hfrom G to F for which (2)

holds and for which there is no nonzero 5 in G with g(o) =0 and h(8)=0

or 2.

From the conditions of this theorem on the mappings g and h, the

following result may be proved easily.

Corollary 1. Suppose that F is afield of characteristic 0, of degree d

(finite or infinite) over the rationals. Then if L(G, g, f) is a simple Lie

algebra over F, the group G must be torsion-free. Let G be a given torsion-

free abelian group and let r be the rank (the maximum number of linearly

independent elements) of G. Then there exists a simple Lie algebra

L(G, g, f) over F if and only if 2d^r, when G is not divisible, or 2d

S; r +1, when G is divisible.

Similar statements hold when F has prime characteristic p. In that

case G must be an elementary £-group in order for L(G, g, f) to be a

simple Lie algebra. The Lie algebras L(G, g, f) were shown to be

simple when g is an isomorphism by Albert and Frank in [l, p. 138].

In the finite dimensional case the simple Lie algebras L(G, g,f) may

be shown to be the same up to isomorphism as the ^"-dimensional

simple Lie algebras considered by Jennings and Ree in [3].

3. The algebra of derivations of L(G, g, /). We shall henceforth

assume that any algebra L(G, g,f) considered is a simple Lie algebra,

and in particular that a mapping h satisfying the conditions of Theo-

rem 1 is given.

Now suppose that D is a derivation of L(G, g,f) and let c(a, y) be

the coefficient of ua+y in uaD, that is,

D'.Ua-^Yl,  C(a> 7)««+7   =    E  C(a>   —a + T)«Y,
yea yea

the sums being finite of course. Since D is a derivation, (uyu,)D

= (uyD)uf+uy(utD), that is, with<p (a, /3) denoting f(a, P)+g(a—j3),

E {<t>(y, «)c(7 + e, -t - • + f) - *(f - e, e)c(y, -y - e + £)
tea , ,

- <t>(y, -y + r)c(«, -t - e + f)}«r = 0
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for all 7 and e in G. Taking £ = y + e+6 this gives

(3) [/(T, «) + g (y~ e)]e(y + e, 6) = [/(7 + 0, e) + g(y - e + 6)]c(y, 6)

+ [f(y^ + o) + g(y-e-e)]c(e,d)

lor all 7, e and 9 in G.

Lemma 1. If 9^0 then

(4) [f(p, 6) + g(P - 6)]c(a, 6) = [f(a, 6) + g(a - 6)]c(p, 6)

for any a and P in G.

In this proof we denote c(y, 9) by cy for any y. The proof is divided

into two cases.

Case I. g(9)^0. Taking y = a and e = 0 in (3), we get 0 = g(9)ca

+ [f(a,9)+g(a-9)]c0,i.e.,

ca= [f(a,d) + g(a-e)][-g(6)]-ico

which, together with the similar result for p, gives (4).

Case II. g(9) =0, 6V0. If g(a) =g(P) =0 then both sides of (4) van-

ish, so we may assume that, say, g(a)960. With 7=0: and e = 0, (3)

gives g(a)[h(9)+l]c0 = 0, i.e., c0 = 0. Now let f and rj be any nonzero

elements of G such that g(f)?^0 and g(v) =0. Then (3) with 7=f and

e=-f gives O = g(r)[/*(0)+2]{cf+c_f}, i.e.,

c-t = - cr.

Also by (3), «(f)[iW + l]cr+, = g(f)[AW+lk+j(f)[*(l+9)+l]e„
i.e.,

Cr+, = a + [*(,) + i]-i[*(, + e) + i]«,,

while with 7= —f and e = £ + r], (3) gives

-«(f)[*W + 2k = - «(f)[A(„ + B) + 2]{C_r + Cf+,}

i.e.,

ci+n = - c_r + [Afo + 0) + 2]-1[A(?) + 2]c,.

Hence [A(ij+fl)+2] [A(i,+0) + l]e,= [A(i,)+l] [h(v)+2]c„ so that

fe(5)[A(2rj+e)+3]c, = 0. Thus c, = 0 and cf+, = cr if h(2n+9)^ -3

while if A(2i7+0)=-3 then, since ^(477+0)^-3 and A(-2i;+0)
y^—3, we have cr+, = cr_,+2, = Cf_, = £f, and again c, = 0. It follows

that

Now with y=a and e = /3+0 in (3) we have
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[f(a, fi + 6) + g(a- fi)]ca+B

= \f(* + 6,fi + 6) + g(a - fi)]ca + [f(a, fi+28) + g(a - /3)]cs.

Subtracting from this (3) with y=a and e = /3 we get f(a, 8)ca+B

=f(a, 8){ca+cs}, so that ca+B = ca+cB. Now (3) with y=a and e = /3

gives

f(p, e)ca = f(a, e)cB.

Multiplying both sides of this by [h(d)]~l[h(8) + \], we get (4) for

this case also, which proves the lemma.

Lemma 2. The derivation D differs by an inner derivation D' from

a derivation for which the coefficients c(a, 8) vanish for all nonzero 8.

Indeed for any nonzero 8 we may take an a such that f(a, 8)

+g(a-8)^0 and set ke=[f(a, 8)+g(a-d)]~1c(a, 8). By Lemma 1,

ke is well defined. Thus if g(8) 5^0 then ke= - [gWh^O, 8), and since

c(0, 8) ^0 for only finitely many 8, there are only finitely many 0

such that g(8)9£0 and ke^O. Similarly, taking a such that g(a)^0,

we find that there are also only finitely many 8 such that g(8) =0 and

keT^O. Therefore we may consider the right multiplication by

Emo keUe. Taking this to be D', and noting that by Lemma 1 if

f(a, 8)+g(a—6)=Q then c(a, 6)=0 (for nonzero 6), we see that the

lemma holds.

Now let d be any additive function of G to F. Then it is easy to see

that the linear transformation Dd determined by the mapping of the

basis elements

ua —> d(a)ua

is a derivation of L(G, g,f).

Theorem 2. The algebra of derivations of the simple Lie algebra

L(G, g,f) is spanned by the inner derivations together with all the deriva-

tions Da.

What remains to be proved is that

(5) ca+B = ca + cB

for any a and /3, where, for any y, cy denotes c(y, 0). If f(a, fi)

+g(a-/3)^0, (5) follows directly from (3) with 0 = 0. But if/(a, /3)

+g(a— /3) =0 then we may pick a y such that the expressions

f(a + p,y) + g(a + p- y),       f(a, fi + y) + g(a - 0 - y),

f(fi, y) + g(fi - y)
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are all nonzero, for if g(a)=0 (so that g(P)=0 also) then any 7 for

which g(y)?^0 will do, while if g(a)^0 we may take 7 = 2/3 unless

a=p. When g(a)7±0 and a=P (and the characteristic is not 3) we

may take 7= —a. Now with such a 7 we have

Ca+P   +   Cy   =    Ca+p+y   =    Ca   +   C0+y   =    Ca   +   C$   +   Cy

(when the characteristic is 3 and a = P one argues that c2a = c_a

= — ca = 2ca). Thus (5) holds and the theorem is proved.

Noting that the derivation sending ua to g(a)ua is inner, we obtain

the following result.

Corollary 2. If G has finite rank n then the algebra of outer deriva-

tions of L(G, g, f) is an abelian Lie algebra of dimension n — 1.

4. Criteria for isomorphism. Henceforth we shall restrict our con-

sideration to simple Lie algebras L(G, g, f) of characteristic zero, so

that G must be torsion-free.

A derivation D of an algebra L is locally algebraic if and only if

it is true that for every x in L the set {xD': *=1, 2, • • • } lies in a

finite-dimensional subspace (depending on x) of L.

Lemma 3. The only locally algebraic derivations of L(G, g, f) are the

derivations Dd-

The derivations Dd are obviously locally algebraic. Now suppose

that D is a locally algebraic derivation. By Theorem 2, D = Ry+Dd,

where Rv is the right multiplication by y = 2ZT ayuy, lor some y and

d. Suppose that some nonzero 7 is y-admissible. We may simply order

G in such a way that this 7>0. Call u( the leading term in an element

2 of L(G, g, f) if e is the greatest z-admissible element of G, and let

ua be the leading term in y. Thus a>0. We shall find a /3 such that

the leading term in (ue)Dl is us+ia, contradicting the assumption that

D is locally algebraic. Indeed if g(a) =0 we may take P to be any posi-

tive element of G with g(jfc>) ?=0, since then the coefficient of Wg+ta in

(uB)Di is [g(P)]{[h(a) +l]*'5^0, while if g(a)^0 we may take P to be

2a. Thus y must be a scalar multiple of ua, and the lemma is proved.

Since for any distinct elements a and P there is an additive map-

ping d of G to F such that d(a)^d(P), we have the following result.

Lemma 4. The only elements of L(G, g, f) which are characteristic vec-

tors for all locally algebraic derivations are the scalar multiples of all the

elements ua.

Now suppose that a is an isomorphism of one algebra L(G, g, f)

onto another, L(G', g',f). We shall determine the relations between
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G, g and / on the one hand, and G', g' and /' on the other. It follows

from Lemma 4 that for every a in G there is an element a" in G' such

that

(6) (Ua)<r  =   daUa"

where la is a nonzero scalar (depending on a and a) and c is a fixed

scalar chosen so that U= 1. The induced mapping a: a—*a° of G into

G' is one-to-one and onto. Since (uyut)a= [(uy)a] [(ut)a],

m   dy+*[f(y,«) + g(y - «)]«(7+o"
1 ' = c2lyh[j'(Y,«') + g'(7* - «')]«,*+.-

for all 7 and e in G. Hence if/(7, e)+g(y — e) ^0 then (7-|-e)'r=7<r-r-€'',

so that, exactly as in the final part of the proof of Theorem 2, a is

always additive and therefore is an isomorphism of G onto G'.

Taking y=a and e = 0 in (7) we get

(8) g'(a") - c-^a)

for any a in G. Now taking e= —7 in (7), we have l-y = l~l for any 7,

and taking 7 = 2f and e= — f we have lx — l2tl-t, i.e., 1% = % for any f

in G. If f(a, fi)+g(a-fi)=0 then, by (7) and (8), cf'(a°, fi°)+g(a-fi)
= 0 and

(9) f'(a°,p°) = c-'f(a,fi).

Similarly, if f(a, fi)-g(a-fi)=0 or 4/(a, /3)+2g(a-j3) =0 then by
taking 7= —a and e= — fi, or 7 = 2a and e = 2/3, in (7), we have (9)

again. Now suppose that the expressions/(a, fi)+g(a—fi), f(a, fi)

— g(a—fi) and 4/(a, fi) +2g(a—fi) are nonzero. By (7) and (8) we have

/_„_„ = LJ^[cf(a°, fi') - g(a - fi)][f(a, fi) - g(a - 0)]-i

while on the other hand

1+4 = Va+e)-1 = la-nB^[cf'(a% fi°) + g(a - fi)]-*[f(a, fi) + g(a - fi)].

Hence [cf'(a", fi°)]2= [f(a, fi)]2. Now similarly by expanding l2a+2B in

two different ways one may see that (9) always holds. It then follows

that la+s = lJB for any a and fi in G. We have thus proved one direc-

tion of the following theorem. The converse is clear from (7).

Theorem 3. A linear mapping a: L(G, g, f)^>L(G', g', f) of one of
the simple Lie algebras L(G, g, f) of characteristic zero onto another is

an isomorphism if and only if there is an induced isomorphism a: a~^a'

of G onto G', a nonzero scalar c and a homomorphism I: a—>la of G into

the multiplicative group F* of the base field, such that (6), (8) and (9)

hold for all a and fi in G.
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This result in particular applies to automorphisms of L(G, g, /).

Thus if G has rank one then the automorphism group of L(G, g, f)

is a semidirect product of a normal subgroup A and a subgroup B,

where A is isomorphic to the group of homomorphisms of G into F*

and B is isomorphic to the group of automorphisms of G. Also if G

is a free abelian group on n generators ax, ■ ■ ■ , an and the elements

g(ai)g(ai) (l=i=j=tn) of F are linearly independent over the ra-

tionals, then the automorphism group of L(G, g, f) is again a semi-

direct product of groups A and B, where A is an ra-fold direct product

of F*, and B has order 2 or 1 according to whether/vanishes identi-

cally or not.
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