THE DISTRIBUTION OF ¢—POINTS OF AN
ENTIRE FUNCTION

S. K. SINGH AND S. H. DWIVEDI

1. Let f(z) be an entire function of order p (0 <p< ) and lower
order N (0=SA< »). It is known that corresponding to every entire
function of finite nonzero order there exists a function p(r) called
its proximate order having the following properties:

(1.1) p(r) is real, continuous and piecewise differentiable,

(1.2) p(r)—p asr—,

(1.3) rp’(r) log r—0 as r— o,

(1.4) log M(r, f)Sr® forrzr,
=r*™ for a sequence of values of .

2. S. M. Shah [2] has proved the existence of a function \(r) for
an entire function of lower order A (0 =A< ») analogous to p(r),
having the following properties:

(2.1) \(r) is a non-negative, continuous function of » for r=7,.

(2.2) N(r) is differentiable except at isolated points at which
N (r—0) and N'(r+0) exist.

(2.3) AMr)>Nasr— o,

(2.4) rN'(r) log r—0 as r— o,

(2.5) log M(r, fy=r@ forrzr,
=72 for a sequence of values of 7.

3. In this note we prove a number of results applying the properties
of A(#) and p(r). In what follows we shall take 0 <\ < . From prop-
erties (2.1)—(2.5) of N(r) we can easily deduce that »*@ is an increas-
ing function of »(r = r,), for

d
- () = (o(1) + M) >0 for 7 = ro.
r
With the usual notations of log M(z, f), n(r, a) and N(r, a) we

prove the following theorems:

TueorEM 1. If
log M (r,
(3.1) lim sup _g—(f)

T f)‘ (n

and
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N(r, a)
(3.2) —0a r— o,
r)\(r)
then for
x #a
@) 0 < lim inf N(r, x)/P® < 1,

r—

(i) ((r—1/(h+1))1/F) < lim sup N(r, x)/P*

700

< (1/N) lim sup #n(r, x)/P@ <

T— 0

where b = (1 + (1 4+ A)V2)/A.

THEOREM 2.
@) lim inf n(r)/P® < A,
r—00
(ii) lim inf #(r)/r*® < p.
THEOREM 3.
() If
N(r,x n(r, x N(r,x
( )exists, then lim (r, =) = X lim %) .
row P oo r)\(r) r—wo f)‘(')
(i) If
. N2 | . n(r, %) . N(r,2)
lim exists, then lim = p lim .
T 0 rPlr r—w fﬂ(') 7o rP(f)

TuEOREM 4. If f(2) be an entire function of finite nonzero order for
which

n(r, a)

—— 0 asr— o,
log M(r,f)

then
... N(r,a)
liminf ——— =
e log M(r,)

We observe that the above theorem does not hold if p=0. For in-
stance consider

5 =T (1+2).

n=1

Then f(2) is an entire function of zero order for which
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n(r, 0) ~ log r,
N(r, 0) ~ 1/2(log r)?,
log M(r, f) ~ N(r, 0);
hence
n(r, 0) N(T, 0)
———— — 0, but ———— —1,
log M(r,f) log M(r,f)
As another example we can take any polynomial P(z) then
n(r, 0) N(r, 0)
— — 0, f —
log M(r, P) log M(r, P)

THEOREM 5. Let f(2) be an entire function of order p (0<p< )
such that

(K > 0).

() lim inf log M (r, f)/r*® > 0,
(i) lim N(r, a)/r® = 0,
then
.. N(x) N(r, x)
0 < lim inf = lim sup <1 for all x # a.
T—® rPir 7T rp(f)

In the above theorem Condition (1) namely

lim inf log M(r, f)/r*™ > 0

T—®%
is essential, because there exist entire functions f(z) for which
lim inf,., N(r, a,)/r*@ =0 forv=1,2, -, k.

For instance see S. M. Shah and S. K. Singh [4, Theorem I(ii)].
There

log n(r, f + a» log log M(r
M(—a) = lim inf 2T @) 0 i inf log log M(r)
T—® lOg r r—w log r
(V=1)2)"':k)

and since

.. dogn(r,f+a) . logN(r,f+ a)

lim inf —— = liminf —

T log r tow log r

so N(r, f+a,) <r o)+ for a sequence of values of 7, also log M(r, f)
> ¢ for all =7, so lim inf,., N(r, f+a,)/log M(r, f) =0;and hence
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a fortiori lim inf,., N(r, f+a,) /@ =0 (v=1,2, - - - , k).
4., LEMMA 1. (hr) D ~prpr (),
LEMMA 2. [I2O=1dt~r @)X,

Proor oF LEMMa 1. It is sufficient to prove that r»Gn)~upr @),

Now
hr hr dt 1
Ahr) — N(r) =f N(ndt = 0<f ! log t) - o(log f).

Hence

PABIAD 1,

Proof of Lemma 2 is similar to [1, Lemma 4, p. 58].
Proor or THEOREM 1(i). From (2.5) we have

log M(r,
4.1) lim inf 28X _

o N ()

Hence the right hand inequality is obvious as N(r, x) Slog M(r, f).
Also clearly N(r,x) > N(r,a), (x#a) for if N(r,x) S N(r,a), then from
Nevanlinna’s second theorem
T(r,f) < N(r, a) + N(r, x) + O(log 7)
= 2N(r, a) + O(log 1),
T¢.f) _ 2N(,a)

7rO T A

+ o(1).

Hence, T'(r, f)/r®—0 and as T(r, f) <log M(r, f) <3T(2r, f); so
log M(r, f)/r*)—0 as r— = ; this contradicts (4.1).
Hence, appealing to Nevanlinna’s second theorem again we have
I(r,f) < 2N(r, %) + O(log r),
I(r,f) 2N(r,x)

V) RYS)

+ o(1).

Hence, 2N (27, x)/(2r)»® > T (27, f)/(2r)} > A4 log M(r, f)/r®
and
Nea) o logM(r,f)

lim inf = A lim inf
r—® r L2} r— o f)‘(r)

4> 0.

(i) Now, lim supr.., N(r, a)/P®+lim sup,., N(r, x)/r*"
2 lim sup,.., T'(7, f)/7 and as lim sup,.., N(7, a)/r*® =0, so
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. N(r,x) . T(r,f)
lim sup = lim sup -
r—© rnm T o
Also, T'(hr, f)>(h—1)/(k+1) log M(r, f), (h>1) so,
. T(hr,f) hk—11 logM(r,f) h—11
lim sup = — lim sup = —
roo (B T 41 B e ) r+1 B

since, lim sup,., log M(r, f)/® =1 by (4.1).
Now choosing the best possible value of %z which is

h= (14 (14 2)1)/)

we have

o,

r H €
N(r, x) <f (H 4+ &)1t ~
o

Hence,

N(r,x) H 1 n(r, x)
£ — = — lim sup .
s A A e M)

lim sup

70

Further from Jensen's theorem we have

 n(t, x) *r n(l, %)
n(r,x) log2 < . dat < - dt < log M(2r, f).
0

Hence, n(r, x) log 2/r*® < [(log M (27, f)/(2r)*@") ]((2r)* @ /P ®); so,

n(r, x log M (r,
lim sup . %) = A lim sup EEI) .f)
) ()

r—® r r— r

Proor oF THEOREM 2(i). Let lim inf, ., n(r) /@ =H, then
n(r) > (H — ¢r* for r = ro;
S0,
NG) > f (H — pro-1s

(H — er*® B (H — ¢
S =

log M(r, f)
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for a sequence of values of r.
Hence, lim sup,.., N(r)/log M(r, f)= H/\ and so

H/\ £ limsup N(r)/log M(r, ) £ 1.

7o

Hence, H=<A\.

The proof of (ii) is similar.

Proor or THEOREM 3(i). Let lim, ., N(r, x)/r*® = M. Set N(r, x)
= N(r), then

(M — err® < N(r) < (M 4 er*.,

r(1+ea)
f @dl = N@ +ra) — Nir) < (M + (r + ra)rtrtrad

— (M — ¢r'®
~ M+ e+ PO — (M — r©®
AOLM 4+ (1 + a)* — (M — ¢}

AMA—1)
=r’*(’){(M+e)(1+)\a+—2'—a2+ -~->——M—I—e}

M\ — 1)
= r)‘('){<Ma>\ +——2'——a2+ ce ) + 2¢ + e)\a} .

Hence

n(r r(ta) g (¢
(N e < f ® i
o 14« , ¢

21

M\ — 1)
__E!_aJr...},

MAA — 1Da?
< {M)\a-l-Ze—I-e)\a-l————-———-l—"'};

n(r)

r)\ (n

2
<(1+a){M)\+—f+e)\—|—
a

Setting first @ =¢€!/? and then making e—0, we get lim sup,., n(r) /@
=< M. Similarly we can prove that lim inf,,, n(r) /@ = M\, and the
first part of the theorem follows. The proof of the second part is
similar.

We omit the proofs of Theorems 4 and 5.

5. We know that for all values of a
(5.1) lim sup ~. 9

row e
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The question naturally arises whether (5.1) is still true if we replace
p(r) by A(r). We show that this is not so. Below we give an example
in which lim sup,.,n(r,a)/P®" = «. Take, f(z) = [IF (14 (2/A.)%*»)
where k= [p]+1, p. =A%, A, =n"". Then,

lim sup n(r, 0)/log M(r,f) = =

r—®

(see S. M. Shah [3]). Now, since log M(r, f) =@ for r=r,, so
lim sup,., #n(r, 0)/r =,
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