CONGRUENCES FOR THE COEFFICIENTS OF MODULAR!
FORMS AND FOR THE COEFFICIENTS OF j(r)

MORRIS NEWMAN

Congruence properties of the coefficients of the complete modular
invariant

©

j) = 1287(r) = X c(n)an = 1 + 744 + 196884x + - - -,
n=—1 x

x=exp 2mir, im 7>0, have been given by D. H. Lehmer [1], J.
Lehner [2; 3], and A. van Wijngaarden [4]. The moduli for which
congruence properties have been determined are products of powers
of 2, 3, 5, 7, 11. Thus Lehner has shown that if »>1 is divisible by
2¢3%5¢7411¢, where a, b, ¢, d=1 and e=1, 2, 3 then ¢(n) is divisible by
23a+832b+350+17d11e.

In this note we give several congruence properties modulo 13, de-
rived from some general congruences for the coefficients of certain
modular forms and an explicit formula for the coefficients ¢(n). These
general congruences are of interest in themselves and will be proved
here as well.

If » is a non-negative integer, define p,(z) as the coefficient of x»
in JJ(1—x")7; otherwise define p,(n) as zero.? (Here and in what
follows all products are extended from 1 to « and all sums from 0 to
o, unless otherwise stated.) Special cases of identities proved by the
author in [5] and [6] follow:

Let p be a prime >3. Set 6=(p—1)/12, A=(p*—1)/12. Then

n—2=a

(1) pa(np + 8) = pa(n)p2(8) — 1’2( >, $ =1 (mod 12)

(2)  pa(np + A) = (=)D 12py(n/p), p # 1 (mod 12).

The coefficient p5(8) has been determined by the author in [7].
As a matter of fact, ps(6) is just 2(—1)¢, where € is the integer nearest
to (a+b)/6 and a, b are the uniquely determined positive integers
such that 2p =a2-+5b2.

From these identities, we shall prove the following congruences:
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? The same convention applies to all the number-theoretical functions appearing
subsequently.
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THEOREM. Let Q be an integer and set R=Qp+2. Then
(3) pr(np + 8) = p2(8)pa+2(n) — prpia(n — 8) (mod p), p =1 (mod12)
(4) pr(np + A) = (= 1)@y, 0(n) (mod p), p # 1(mod 12).

ProoF oF THE THEOREM. We prove only congruence (3), the proof
of congruence (4) being entirely similar. We have

ITa —a® = JT (1 — amyor
= ]I (1 — a)°(1 — 2)? (mod ).
Comparing coefficients, we find

pr(n) = 2. pa(j)pa(n — pj) (mod p).

0sjsn/p

Replace # by np+-6. Since 8/p <1, j now runs from 0 to » inclusive,
and making use of (1) we find

pulng +8) = 3 pa(i)pal(n — )p + 8)

= f_; pa) {pz(n — pa6) — p(EF)}
= poy2(n)p2(8) — jz:%Po(j)lh (n_—;)_:j) (mod ).

Consider
n — o — 6 m
3 poli)ps (—’———;—) = 3 palm = Dpui/p),  mo=n—s.
J=0 J=0

We have

S 5 paln = i/} 7 = T palman- st

= H (1 — xm)Q(l —_ xmp)2
=[] 1 — a2+ (mod p).
Thus

i pa(m — 1) p2(j/p) = papte(m) (mod p),

J=0

and the conclusion follows.
Some interesting consequences of this theorem are obtained by
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choosing Q= +2, Q= —2p. Setting a=2p+2, f=2p—2, and ¥
=2p%—2 we find

(5)  pa(np + 8) = p2(8)ps(n) — pa(n — ) (mod p), p =1 (mod12)
(6) p—p(np +8) = — pp(n — 8) (mod p), nz1,p=1(mod 12)

(1) p—a(np + 8) = p2(8)p-s(n) (mod p), nz1,p=1(mod 12)
(8) palnp + A) = (—1)®V1%p,(n) (mod p), $ # 1 (mod 12)
(9) p—o(np+ A) =0 (mod p), n21,p#1 (mod12).

For p=13, (6) implies that
(10) Pp_2a(13n + 1) = — pau(n — 1) = — 7(n) (mod 13), n= 1.

We now wish to employ these congruences to determine a con-
gruence for j(r) modulo 13. It is known that if

Gr = D (mr + n)~% = By + (—1)*4k D on_i(n)x”
Naml
is the Eisenstein modular form,

L]

A=z2]]@A =) =3 r(n)xn,
n=l
and r, s are integers such that rk=6s, then G;/A’ is an entire modular
function on the full modular group I' having a pole of order s in the
uniformizing variable x at r=7%, and so is a polynomial in J of
degree s. For £=6, r=s=1, we find that Gg/A is linear in J. Compar-
ing coefficients we find that

24-2730 &

601 ,-Zo ou(f+ Dp_su(n —j), n=1

(11)  ¢(n) = p_sa(n + 1) +

and since 13| 2730, this implies that

(12) c(n) = p_oss(n + 1) (mod 13), n=1.
Thus making use of (10) we obtain the interesting congruence

(13) c(13n) = — 7(n) (mod 13), n= 1.

It is known that 7(n) is multiplicative. In fact if p is a prime,
Mordell has shown that

(14) 7(np) = 1(n)7(p) — p'r(n/p).
We thus obtain the following congruence, using (13) and (14):
(15) c(13np) + c(13n)c(13p) + p'c(13n/p) = 0 (mod 13).



612 MORRIS NEWMAN

From (15) we find easily that if p is a prime such that 13[1’(15), and
if (n, p)=1, then

(16) c(13np?!) = 0 (mod 13).

For p <200, this happens for p=7, 11, 157, 179. Thus we can say
for example that ¢(91%) is divisible by 13 if (n, 7)=1 and that
c(143n) is divisible by 13 if (n, 11) =1. The least value which is an
instance of (16) is 91. In his paper [4] van Wijngaarden gives ¢(91),
and this is indeed divisible by 13.

Several instances of (15) follow:

17 c(26n) = 2¢(13n) + 6¢(13n/2) (mod 13),

(18) c(39n) = 5¢(13n) + 4c(131/3) (mod 13),

(19) ¢(1691) = 8¢(13n) (mod 13).
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