CONGRUENCES FOR THE COEFFICIENTS OF MODULAR ${ }^{1}$ FORMS AND FOR THE COEFFICIENTS OF $j(\tau)$

MORRIS NEWMAN

Congruence properties of the coefficients of the complete modular invariant

$$
j(\tau)=12^{3} J(\tau)=\sum_{n=-1}^{\infty} c(n) x^{n}=\frac{1}{x}+744+196884 x+\cdots,
$$

$x=\exp 2 \pi i \tau$, im $\tau>0$, have been given by D. H. Lehmer [1], J. Lehner [2;3], and A. van Wijngaarden [4]. The moduli for which congruence properties have been determined are products of powers of $2,3,5,7,11$. Thus Lehner has shown that if $n>1$ is divisible by $2^{a} 3^{b} 5^{c} 7^{d} 11^{e}$, where $a, b, c, d \geqq 1$ and $e=1,2,3$ then $c(n)$ is divisible by $2^{3 a+8} 3^{2 b+3} 5^{c+1} 7^{d} 11^{e}$.

In this note we give several congruence properties modulo 13, derived from some general congruences for the coefficients of certain modular forms and an explicit formula for the coefficients $c(n)$. These general congruences are of interest in themselves and will be proved here as well.

If n is a non-negative integer, define $p_{r}(n)$ as the coefficient of x^{n} in $\prod\left(1-x^{n}\right)^{r}$; otherwise define $p_{r}(n)$ as zero. ${ }^{2}$ (Here and in what follows all products are extended from 1 to ∞ and all sums from 0 to ∞, unless otherwise stated.) Special cases of identities proved by the author in [5] and [6] follow:

Let p be a prime >3. Set $\delta=(p-1) / 12, \Delta=\left(p^{2}-1\right) / 12$. Then

$$
\begin{array}{ll}
p_{2}(n p+\delta)=p_{2}(n) p_{2}(\delta)-p_{2}\left(\frac{n-\delta}{p}\right), & p \equiv 1(\bmod 12) \\
p_{2}(n p+\Delta)=(-1)^{(p+1) / 2} p_{2}(n / p), & p \not \equiv 1(\bmod 12) . \tag{2}
\end{array}
$$

The coefficient $p_{2}(\delta)$ has been determined by the author in [7]. As a matter of fact, $p_{2}(\delta)$ is just $2(-1)^{\epsilon}$, where ϵ is the integer nearest to $(a+b) / 6$ and a, b are the uniquely determined positive integers such that $2 p=a^{2}+b^{2}$.

From these identities, we shall prove the following congruences:
Received by the editors March 7, 1958.
${ }^{1}$ The preparation of this paper was supported (in part) by the Office of Naval Research.
${ }^{2}$ The same convention applies to all the number-theoretical functions appearing subsequently.

Theorem. Let Q be an integer and set $R=Q p+2$. Then
(3) $p_{R}(n p+\delta) \equiv p_{2}(\delta) p_{Q+2}(n)-p_{2 p+Q}(n-\delta)(\bmod p), p \equiv 1(\bmod 12)$
(4) $p_{R}(n p+\Delta) \equiv(-1)^{(p+1) / 2} p_{2 p+Q}(n)(\bmod p), \quad p \neq 1(\bmod 12)$.

Proof of the Theorem. We prove only congruence (3), the proof of congruence (4) being entirely similar. We have

$$
\begin{aligned}
\Pi\left(1-x^{n}\right)^{R} & =\Pi\left(1-x^{n}\right)^{Q p+2} \\
& \equiv \Pi\left(1-x^{n p}\right)^{Q}\left(1-x^{n}\right)^{2}(\bmod p) .
\end{aligned}
$$

Comparing coefficients, we find

$$
p_{R}(n) \equiv \sum_{0 \leq j \leq n / p} p_{Q}(j) p_{2}(n-p j)(\bmod p) .
$$

Replace n by $n p+\delta$. Since $\delta / p<1, j$ now runs from 0 to n inclusive, and making use of (1) we find

$$
\begin{aligned}
p_{R}(n p+\delta) & \equiv \sum_{j=0}^{n} p_{Q}(j) p_{2}((n-j) p+\delta) \\
& \equiv \sum_{j=0}^{n} p_{Q}(j)\left\{p_{2}(n-j) p_{2}(\delta)-p_{2}\left(\frac{n-j-\delta}{p}\right)\right\} \\
& \equiv p_{Q+2}(n) p_{2}(\delta)-\sum_{j=0}^{n} p_{Q}(j) p_{2}\left(\frac{n-j-\delta}{p}\right)(\bmod p) .
\end{aligned}
$$

Consider

$$
\sum_{j=0}^{n} p_{Q}(j) p_{2}\left(\frac{n-j-\delta}{p}\right)=\sum_{j=0}^{m} p_{Q}(m-j) p_{2}(j / p), \quad m=n-\delta .
$$

We have

$$
\begin{aligned}
\sum\left\{\sum_{j=0}^{m} p_{Q}(m-j) p_{2}(j / p)\right\} x^{m} & =\sum p_{Q}(m) x^{m} \cdot \sum p_{2}(m) x^{m p} \\
& =\Pi\left(1-x^{m}\right)^{Q}\left(1-x^{m p}\right)^{2} \\
& \equiv \prod\left(1-x^{m}\right)^{Q+2 p}(\bmod p) .
\end{aligned}
$$

Thus

$$
\sum_{j=0}^{m} p_{Q}(m-j) p_{2}(j / p) \equiv p_{2 p+Q}(m)(\bmod p),
$$

and the conclusion follows.
Some interesting consequences of this theorem are obtained by
choosing $Q= \pm 2, Q=-2 p$. Setting $\alpha=2 p+2, \beta=2 p-2$, and γ $=2 p^{2}-2$ we find
(5) $\quad p_{\alpha}(n p+\delta) \equiv p_{2}(\delta) p_{4}(n)-p_{\alpha}(n-\delta)(\bmod p), \quad p \equiv 1(\bmod 12)$
(6) $p_{-\beta}(n p+\delta) \equiv-p_{\beta}(n-\delta)(\bmod p), \quad n \geqq 1, p \equiv 1(\bmod 12)$
(7) $p_{-\gamma}(n p+\delta) \equiv p_{2}(\delta) p_{-\beta}(n)(\bmod p), \quad n \geqq 1, p \equiv 1(\bmod 12)$
(8) $p_{\alpha}(n p+\Delta) \equiv(-1)^{(p+1) / 2} p_{\alpha}(n)(\bmod p), \quad p \not \equiv 1(\bmod 12)$
(9) $p_{-\gamma}(n p+\Delta) \equiv 0(\bmod p), \quad n \geqq 1, p \not \equiv 1(\bmod 12)$.

For $p=13$, (6) implies that

$$
\begin{equation*}
p_{-24}(13 n+1) \equiv-p_{24}(n-1) \equiv-\tau(n)(\bmod 13), \quad n \geqq 1 \tag{10}
\end{equation*}
$$

We now wish to employ these congruences to determine a congruence for $j(\tau)$ modulo 13. It is known that if

$$
G_{k}=\sum^{\prime}(m \tau+n)^{-2 k}=B_{k}+(-1)^{k} 4 k \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) x^{n}
$$

is the Eisenstein modular form,

$$
\Delta=x \Pi\left(1-x^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) x^{n}
$$

and r, s are integers such that $r k=6 s$, then G_{k}^{r} / Δ^{*} is an entire modular function on the full modular group Γ having a pole of order s in the uniformizing variable x at $\tau=i \infty$, and so is a polynomial in J of degree s. For $k=6, r=s=1$, we find that G_{6} / Δ is linear in J. Comparing coefficients we find that

$$
\begin{equation*}
c(n)=p_{-24}(n+1)+\frac{24 \cdot 2730}{691} \sum_{j=0}^{n} \sigma_{11}(j+1) p_{-24}(n-j), \quad n \geqq 1 \tag{11}
\end{equation*}
$$

and since $13 \mid 2730$, this implies that

$$
\begin{equation*}
c(n) \equiv p_{-24}(n+1)(\bmod 13), \quad n \geqq 1 \tag{12}
\end{equation*}
$$

Thus making use of (10) we obtain the interesting congruence

$$
\begin{equation*}
c(13 n) \equiv-\tau(n)(\bmod 13), \quad n \geqq 1 \tag{13}
\end{equation*}
$$

It is known that $\tau(n)$ is multiplicative. In fact if p is a prime, Mordell has shown that

$$
\begin{equation*}
\tau(n p)=\tau(n) \tau(p)-p^{11} \tau(n / p) . \tag{14}
\end{equation*}
$$

We thus obtain the following congruence, using (13) and (14):

$$
\begin{equation*}
c(13 n p)+c(13 n) c(13 p)+p^{11} c(13 n / p) \equiv 0(\bmod 13) . \tag{15}
\end{equation*}
$$

From (15) we find easily that if p is a prime such that $13 \mid \tau(p)$, and if $(n, p)=1$, then

$$
\begin{equation*}
c\left(13 n p^{2 a-1}\right) \equiv 0(\bmod 13) \tag{16}
\end{equation*}
$$

For $p<200$, this happens for $p=7,11,157,179$. Thus we can say for example that $c(91 n)$ is divisible by 13 if $(n, 7)=1$ and that $c(143 n)$ is divisible by 13 if $(n, 11)=1$. The least value which is an instance of (16) is 91 . In his paper [4] van Wijngaarden gives $c(91)$, and this is indeed divisible by 13.

Several instances of (15) follow:

$$
\begin{align*}
c(26 n) & \equiv 2 c(13 n)+6 c(13 n / 2)(\bmod 13) \tag{17}\\
c(39 n) & \equiv 5 c(13 n)+4 c(13 n / 3)(\bmod 13) \tag{18}\\
c(169 n) & \equiv 8 c(13 n)(\bmod 13) \tag{19}
\end{align*}
$$

References

1. D. H. Lehmer, Properties of the coefficients of the modular invariant $J(\tau)$, Amer. J. Math. vol. 64 (1942) pp. 488-502.
2. J. Lehner, Divisibility properties of the Fourier coefficients of the modular invariant $J(\tau)$, Amer. J. Math. vol. 71 (1949) pp. 136-148.
3. -, Further congruence properties of the Fourier coefficients of the modular invariant $J(\tau)$, Amer. J. Math. vol. 71 (1949) pp. 373-386.
4. A. van Wijngaarden, On the coefficients of the modular invariant $J(\tau)$, Proc. Kon. Nederl. Akad. Wetensch. Ser. A vol. 16 (1953) pp. 389-400.
5. M. Newman, Remarks on some modular identities, Trans. Amer. Math. Soc. vol. 73 (1952) pp. 313-320.
6. -_, An identity for the coefficients of certain niodular forms, J. London Math. Soc. vol. 30 (1955) pp. 488-493.
7. -, The coefficients of certain infinite products, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 435-439.

National Bureau of Standards

