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A RING ADMITTING MODULES OF LIMITED
DIMENSION

WILLIAM G. LEAVITT

Let K be a ring with unit. A module1 M over K is said to he finite

dimensional if it (i) is finitely based, and (ii) contains no infinite

independent set. For such a module there must exist [l, Theorem 7,

p. 245] an integer n such that all bases have length n (the invariant

basis number property), and no independent set has length greater

than n. It was shown in a recent paper [l, Theorem 6, p. 245] that

this property carries downward with decreasing length of basis. That

is: If K admits a module of finite dimension n, then every module over

K having a basis of length ^n is also finite dimensional.

It was remarked (in [l]) that this leaves open the possibility that

a ring could exist admitting only modules of limited dimension. That

is, for some fixed integer n there might exist a ring K such that a

module over K is finite dimensional if and only if it has a basis of

length ^w. It is the purpose of this paper to construct such a ring for

arbitrary n.

Let R be the ring of (noncommutative) polynomials generated

over the field of integers modulo 2 by a countably infinite set of sym-

bols \xi, yj}, with i = \, ■ ■ • , m = (n + 2)(n + \);j=\, 2, • • • , where

n is the fixed integer chosen. Let R' be the subring of R generated by

the {x^. It is desired to order a (suitably restricted) set of w-dimen-

sional row vectors of members of R'. Begin by ordering the set of all

Received by the editors March 11, 1957 and, in revised form, February 28, 1958.

1 Throughout this paper "module" will mean "left module."
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monomials w = xilxii ■ ■ ■ x,(, where t = l,2, ■ ■ ■ . ll w' = x'hx'h ■ ■ • x'ie,

set w<w' il either:

(1) E *'* < Z **> or

(2) £ ** = Z **

and the sequence ii, • • • , it precedes i[, • ■ ■ , i[ lexicographically.

Also set 1 <w for all such w.

Lemma 1. If uj£\, then w<wu.

This is clear from condition (1).

Lemma 2. Ifuv^wv, then u^w.

Cancelling the same term from two monomials ordered by (1) and

(2) does not change either the comparison in (1) or the lexicographic

order in (2).

Lemma 3. If u^u' and v^v', then uv^u'v'.

By an argument reversing that of the preceding lemma, multiplica-

tion on the right (or left) by the same monomial does not change the

ordering. Thus uv^u'v^u'v'.

Now let each polynomial aER' be written with its terms in de-

scending order. Thus a = Wi+ ■ ■ ■ +wr, with Wi> • • • >wr. Order

the polynomials according to lexicographical order of the sequences

Wi, • • ■ , wT, and set 0<1.

Finally, consider the set of all ^-dimensional row vectors

(7i7 • • ■ . 7n) over R'. A vector is said to be admissible if it satisfies
the conditions:

(a) At least one 7,5^0, and all 7,^1.

(b) 7r>7r+i if 7^0, and 7r=7r+i if 7, = 0, for r=l, • • • , n — 1.

(c) The leading term of a yr is not a left divisor of any term of any

other 7„.

Lemma 4. Every nonzero vector over R! may be reduced by elementary

(column) transformations to either (1, 0, • • ■ , 0) or an admissible

vector.

Suppose condition (c) is not satisfied. Then there exist yr = Wi

+ • ■ ■ and 7„ = Wi+ • • • , with some ut = WiV. Then 7/=7<+7rz'

= «i+ • • • +ut-i+Ut+i+ • • ■ +w+ • • • . Since the terms of yr

and 7, have been written in descending order, we have ut>Uj

(j^t + l), and by Lemma 3, ut^WiV>w,v (i^2). Thus 7,'<7„. If

1 appears at any stage as one of the components, the vector is im-
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mediately reducible to (1, 0, ■ • • , 0). Otherwise it is clear that the

above process must end after a finite number of steps in a vector

satisfying (a) and (c). A permutation then yields a vector satisfying

all three conditions.

The set of all admissible vectors (yx, • • • , yn) is now ordered ac-

cording to lexicographic order of the sequences 7i, • • • , yn- Let

(Ti> " - " . 7n) with fe = l, 2, • • • designate this ordered set of vectors.

Also if 7*5^0, let z* be its leading term.

Lemma 5. Any nonzero sum / "_t 7*<£j, where all tpjER' and the

Uj are the leading terms of the nonzero <pj, has leading term z\ut for

some t.

If y)<pj9^Q, its leading term, by Lemma 3, is zjwy. By condition (c)

on admissible vectors, no z) is the left divisor of another, so the z]uj

are all distinct. Thus if zfw( is maximal among the z)uj, it is greater

than all other terms in the sum.

Now let H be the two-sided ideal generated by

(3) y*7/,

(4) x(yh,

(5) ykyh,

where j=l, ■ • • , n; * = 1, • • ■ , m; k, h = l, 2, • ■ ■ . The ring whose

construction is the purpose of this paper is K = R/H, and it will now

be shown that K does, indeed, have the desired properties.

We will first show that if a module over K has a basis of length

t^n, then every set of t + 1 of its members is dependent. This is

equivalent to saying that if A is a t + 1 by t matrix, then there is a

nonzero vector X such that XA =0. Remark, first, from (4) and (5),

that if a monomial contains a y* anywhere other than as initial sym-

bol, it is a member of H. If every term of every element of the first

row of A begins with some yn, then we may choose X — (x,-, 0, • • • , 0)

for any x,-. Otherwise, by Lemma 4, an elementary matrix E exists

such that the portion of the first row of AE free of y\ either forms the

first / elements of some admissible vector (yl, ■ ■ ■ , y*, 0, • • • , 0) or

is (1, 0, • • • , 0). In the former case, we choose X = (yk, 0, • • • , 0).

In the latter case, let a a designate the elements of the first column

of AE, so that o!n = l+ ^yA. Now, it is clear that for any fiEK

we have (fi +<p)axx = fi, where <p = JZyA if 1 is a term of fi, <p = 0 other-

wise. If we let <pi= ^2yn0h or 0 according as 1 is or is not a term of

aa, then aa + (cia+<pi)aXi = 0 for i^2. There is accordingly an ele-

mentary matrix U such that
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[«ll       * "I

0        A'A

for some t — 1 by t matrix A'. Assuming, by way of induction, that

there is an X' such that IM' = 0, we may take X=(OX') U. For the

case t = \, of course, we have simply

UAE-[°ol
and we can let X= (0 1) U.

The above discussion establishes the sufficiency of the following:

Theorem. For each integer n there exists a ring K such that a neces-

sary and sufficient condition for a module over K to be finite dimensional

is that it have a basis of length g n.

To establish the necessity, it is enough to exhibit a module with a

basis of length w-f-1 which is not finite dimensional. This will be the

space of all (w + l)-dimensional vectors, and the independent sets will

be the rows of

Xl X„+3    •   •   •  X„(,,+2)+l

T =    ■ ■ .

-Xn+i     Xtn+l  •   •   • Xm

Suppose XT = 0 for some vector X. Clearly X = Xo+^,ykXk lor

some set of vectors X0, Xk with elements from R'. From the definition

of H, it is clear that XT — 0 implies X0T = 0 and ytXkT = 0 lor each k.

Again, from the form of T, it follows that X0 = 0.

Consider a fixed k, and let Xk = (<f>i, ■ ■ ■ ,<pH+2), Vk = (y\, • ■ ■ ,y„).

From (3) it is clear that in any relation of form yt^ = 0, the \j/ must

be a linear combination of the y)(j = l, • • • , n). Thus from the

relation ytXtF = 0 it follows that

(6) VkB = XkT,

lor some matrix B with elements from R'. Let B=[p,t] and set

P„t=^2T-i PstiXi+Psio, where each /38(0 = 0 or 1. Similarly set

y)= ZXi 7y;*;+7;o.
Now, from the form of T, we have XkT=(a0, • • • , an), where

cth= 2Ji~i <biXh(n+2)+i lor h = 0, 1, • • • , n. Equating coefficients of xr

with r = l, • • • , m in (6), we have for each h

(<t>i    if r = h(n + 2) + i with 1 ^ i ^ n + 2,
(7) Lhr = <

10     otherwise,
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where

n n

Lhr  =   X) yjfijhr   +   ̂  yjrfijhO-
i-l i-l

Let xrj be the last symbol of z) and set zk] = VjXrj. Now for each rj

there is exactly one value of h satisfying r,- = h(n + 2)+i for some i

in the range l^i^n + 2. Since there are at most n distinct values of

rj, whereas h has n + \ values, there must be at least one value of h

such that for all r,- we have rjj&h(n+2)+i. For this value of h we

have Lhrj = 0 for all r,-.

Now assume that there is some s=il for which fisho^O, while

(3,7.0 = 0 for all j <s. The sum X?-i y jr.fi w collapses to 2"-» y jr.fi jho.

Since zf is a term (in fact, the leading term) of 7*, and since it has

final symbol xrj, it is contained in 7yr,xr/. Further 7f >7* (when j>s)

and so its leading term, zf, is greater than all other terms of 7*

(j^s). In particular, zf is greater than all terms of yjrxTt (s>j). By

Lemma 2, vs is greater than all terms of yjr, and so is the leading term

of X)"_s yjr,fi,ho- Now by Lemma 5, the leading term of Xl"-i 7j%a>-,

is z\ut for some integer /. Since LhTt = Q it follows that zfut+v, = 0.

But then zf would be a left divisor of zf, violating condition (c) on

admissibility. From this contradiction, we must conclude that

/3.,7,o = 0 for all .7 = 1, ■ • • , n. From (7) and (8) it then follows that each

(pi, and hence Xk, is a sum of multiples of the yf. Thus ykXk = 0, and

since k was arbitrary, we conclude that X = 0.

One additional remark may be made concerning the ring K. While

K admits finitely based modules which are not finite dimensional, it

is nevertheless true that all such modules satisfy the invariant basis

number property. This is equivalent to saying that all unimodular

matrices over K are square, which is a consequence of the fact that

none of the generators, (1), (2), or (3) of II contain the term 1.

(See the argument in [2, preceding Theorem 1, p. 189].) It is an open

question whether or not there exists a ring satisfying both the above

theorem and the condition that its modules above some level lack

the invariant basis number property.
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