
ON THE SEMISIMPLICITY OF GROUP ALGEBRAS

ORLANDO E. VILLAMAYOR1

In this paper we find sufficient conditions for a group algebra over

a commutative ring to be semisimple. In particular, the case in

which the group is abelian is solved for fields of characteristic zero,

and, in a more general case, for semisimple commutative rings which

are uniquely divisible by every integer. Under similar restrictions

on the ring of coefficients, it is proved the semisimplicity of group alge-

bras when the group is not abelian but the factor group module its

center is locally finite.2

In connection with this problem, we study homological properties

of group algebras generalizing some results of M. Auslander [l,

Theorems 6 and 9]. In fact, Lemmas 3 and 4 give new proofs of Aus-

lander's Theorems 6 and 9 in the case C=(l).

1. Notations. A group G will be called a torsion group if every ele-

ment of G has finite order, it will be called locally finite if every

finitely generated subgroup is finite and it will be called free (or free

abelian) if it is a direct sum of infinite cyclic groups.

Direct sum and direct product are defined as in [3]. Given a set of

rings Ri, their direct product will be denoted by J{Ri.

If G is a group and R is a ring, the group algebra generated by G

over R will be denoted by R(G).

In a ring R, radical and semisimplicity are meant in the sense of

Jacobson [5].

A ring is called regular in the sense of von Neumann [7]. It is well

known that every regular ring is semisimple.

All algebras and rings will be assumed to have a unit and field

will mean commutative field. Modules over rings will always be

unitary left-modules unless otherwise expressed.

In homological terminology and notations we will follow [3]. In

order to avoid confusions when a ring A may be considered as an

algebra over different ground rings, we shall denote by S-dim. A

(resp. 5-w. dim. A) the dimension (resp. w. dim) of the 5-algebra A.
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2. Our results are consequences of the following lemmas.

Lemma 1. Let R be a ring and S a subring contained in the center.

If S-w. dim R = 0, R is S-projective and S is semisimple, then R is

semisimple.

Proof. Since 5 is commutative and semisimple, then it is subdirect

sum of fields Fi (iEM, an arbitrary set), that is, 5^1 LI Fi and

(/>,: 5—»F< are epimorphisms induced by the projections i/-,: LIF;—»F<.

We wish to show, in first place, that RQ.J[.R®sFi. Since R is S-

projective the exactness of

0-+S-»F,n

yields, by tensoring with R, the exactness of

0->R-^R®sY[Fi.

Now there is a natural map from R®sT[Fi to T[R®sFi [3, p. 32].

This map is a monomorphism when R is 5-projective; indeed, this is

clear when R is S, hence, since ® commutes with direct sums, when

R is 5-free, and so finally when R is 5-projective.

Now, since every sequence S—>/\—>0 is exact, then i?—>i?®sF<—>0

is exact, hence, R is subdirect sum of the rings R®sFi.

Since R is 5-projective, the spectral sequence (5a) of [3, p. 347]

shows that w.gl.dim i?®sF<g5-w. dim R+vf. gl. dim F,-. Now, Ft is

a field and S-w. dim R = Q by hypothesis, thus w. gl. dim i?®sF< = 0.

But, by [4, Theorem 5] this implies R®sFi is regular, hence semi-

simple. Then R is a subdirect sum of semisimple rings and so semi-

simple.

Concerning homological dimension of group algebras we have:

Lemma 2. Let G be a group and C a subgroup contained in the center

of G. If K is any commutative ring, then K(C)-dim K(G) =0 if and

only if: (1) G/C is finite, (2) K is uniquely divisible by the order of

G/C.

Proof. Since K(G) is a free X(C)-module, then [6, Theorem 1,

p. 88] K(C)-dim K(G)=0 implies that the order of K(G) as K(C)-

module is finite. Since it equals the order of G/C, the necessity of the

finiteness of G/C is proved. The necessity of (2) is a consequence of

Lemma 4 below.
Suppose, now, that conditions (1) and (2) are fulfilled. Let us call

G' = K(G)®K(C)K(G)*.
In order to show K(C)-dim K(G)=0, we apply [3, IX, 7, 7]. In

first place, we see that the elements a0a_1 are independent of the

choice of a in the coset of G modulo C. In fact, if b = ac, cEC, then
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b®b~1=ac®c~1a~1 and, since we tensor over K(C), b®b~1=acc~l

®a~1=a®a~1.

Let m be the order of G/C and {a,} a complete set of representa-

tives in G of G/C. Let us call 8 = (l/m) Ei a.-®ofx. If <r: K(G)®K(G)
—>K(G) is the natural homomorphism, then a(0) =e (the identity of

K(G)).
Let (a0') be the cyclic group generated by aB' (= the image of aQ

in G/C), let {bi ] be a complete set of representatives in G/C of the

(right-) cosets modulo (a{) and \bk] a complete set of representa-

tive of {bi } in G. Then, {0064} is a complete set of representatives

of G/C in G, and

8 = (1/w) E °o&* ® bk a0 .

Then, given a0EG, we may write 0=E^*> with 0*=E/ao&*

®&*~W> and, obviously, ao8k=8kao, hence a$ = 8ao for every a0EG,

then ad=8a for every aG^(G).

Since 0 satisfies both conditions of [3, IX Proposition 7.7, p. 179]

K(C)-dimK(G)=0.
We shall use in the following lemma the fact that, in particular,

K(G) is Ge-flat.

Lemma 3. Let G be a group and C a subgroup contained in the center

of G. If G/C is locally finite and K is a commutative ring, then K(C)-

w. dim K(G) =0 if and only if K is uniquely divisible by the order of
each element in G/C.

We shall prove, now, the sufficiency of our conditions.

X(C)-w.dim K(G) =0 means, by definition, that K(G) is Ge-flat.

Suppose E<^ia«' = 0 Q^iEG', aiEK(G)). Let {ak} be the (finite)
set of elements of G appearing in this expression, and 5 the subgroup

of G generated by {ak} over C.

Then, ~KiESe, aiEK(S) and, under our hypothesis, S/C satisfies

the conditions of Lemma 2, hence K(S) is S'-flat, therefore, there

are elements fiijEK(S), p.ijESe satisfying the conditions of [3, VI,

Example 6, p. 123]. The inclusion SQG implies that, actually,

fiaEK(G) and pujEG', then K(G) is Ge-flat and the sufficiency of the
conditions of the lemma is proved.

The necessity is a consequence of the following lemma.

Lemma 4. Let G be a group and C a subgroup contained in the center

of G. If K is a commutative ring, then K(C)-w. dim K(G) =0 implies

G/C is a torsion group and K is uniquely divisible by the order of each

element in G/C.
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Proof. Suppose G/C is not a torsion group, then there is at least

one element a'EG/C of infinite order. If aEG is a representative of

a', it may be seen by direct computation that l®a* — a®l* is not a

divisor of zero. If 1 is the unit of K(G), then (l®a* — a®l*) ■ 1 =0,

and no elements \iEGe verify the conditions of [3, VI, Example 6,

p. 123], hence, K(G) is not G-'-flat, that is, K(C)-w. dim K(G)^0.

Thus, G' = G/C is a torsion group. Let a'EG' have order n and let

Z' he the cyclic subgroup of G' generated by a'. Let {bj } he a com-

plete set of representatives of the left-cosets of G' modulo Z', i.e.,

G' = Uk Z'bk', Z'b'j r\Z'bk' = 0 if j^k.
If we fix a set {bj} of representatives of {bj } in G and an element

a, representative of a' in G, then {a*6y} (O^i^n — 1) is a complete

set of representatives of G' in G, hence {bj'1a~i} is also. Thus both

sets {a'6/} and {b^a-'} form bases of K(G) over K(C), and

(1) {a%® (ir^O*}

is a basis of G" over K(C).

Let a= (1 <8>a*— a<8>l*) and suppose that, for some yEG", we have

a7 = 0. Let us call Mki the K(C)-submodule of Ge spanned by the set

{a*'&/i<g>(&r1a"0*} (0^', j^n-l, k, I fixed), then Ge is the direct

sum of the set {Mki}. It is easily seen that, if 8EMki, then aoEMki,

hence, if we write y = ^Pki(pkiEMki), from ay =0 we obtain apkl = 0.

Let

(2) ft, = £ £wa«'6, 0 (br'a-'T,

then a/3s( = 0 implies &,■,•„(. = &oo«* (O^i^n — 1).

Now, since A\(G) is Ge-flat, [3, VI, Example 6] assures the existence

of elements \uEGe, ruEK(G) such that aXu = 0 and ^2\uru = l. If we

call 7= 2Xk(1®>'u), we find 07 =0 and 7-1 = 1.
Then, 7= jj8,«, a/38( = 0, with /3s4 having the form (2), thus

(3) E £ kij^KbT'a-* =1      (0 =g ;,/ g « - 1)
st     ij

with £«,.. = &ooS(. Since K(G)= YL®K(C)albs, the sum (3) need only

be extended over those terms for which

aib.bT1ar' E C.

This last condition shows that bj =b[ mod Z', hence bs = bt and

al-'EC. Since 0^i, j^n — 1, then a'-'EC and the fact that a' has

order w in G', imply *=j. Thus, the sum (3) is extended only over

those terms for which i=j and b, = bt, that is,

n £ ^oo«. = »/ = 1
8
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and 1 has an inverse/in K(C).

If we write/= ^2fhgh(fhEK, ghEC with go = l), then nf=\ implies

n/o = l, that is, n has an inverse in K.

The following auxiliary results will be used to apply the previous

lemmas.

Lemma 5. If G is an abelian group, then either G is a torsion group

or it has a free subgroup M such that G/M is a torsion group.

Proof. If G is not a torsion group, then it has elements of infinite

order. Let W be the set of subsets caC.G verifying the following con-

ditions: (1) If xECa, then the order of x is infinity, (2) the subgroup

generated by ca is the direct sum of the (infinite) cyclic groups gener-

ated by all the elements xEca (i.e., the x's are independent over the

integers).

By ordering Why inclusion, it is trivially true that the join of every

ascending chain of caEWis an element cBEW, then, applying Zorn's

lemma, we find a maximal set cyE W. Let us call M the group gener-

ated by cy.

We must prove, now, that G/M is a torsion group.

If G = M, the result is trivial.

If Gy^M, suppose G/M is not torsion, and b'EG/M is an element

of infinite order.

Let b he a representative of V in G. Then b has infinite order. Let

S be the subgroup generated by b and M.

Every element of 5 has the form s = mbT. If s — mxbT = m2bs then

mxm^bT~s = \. By the homomorphism G—>G/Af we have b'r~s = l,

hence r = s, then bT~' = \ and mxm2~1 = 'i. implies mx = m%. This reason-

ing proves that the representation s=mbr is unique, that is, 5

= M@(b), hence cy^J{b} EW, contradicting the maximality of cy.

Theorem l.3 If G is a free abelian group and K is a commutative

ring without nonzero nilpotent elements, then the group ring K(G) is

semisimple.

Proof. Suppose G is an infinite cyclic group. Then the elements of

K(G) have the form a= Er *<£* (kiEK, g is the generator of G). The

subring T of elements Eo kig{is isomorphic with the polynomial ring

K[X].
Let J be the radical of K(G), a = E* kig'EJ and suppose a^O.

Then, if we call fi=ag1-r, fi= E'i klgi (t = s + l-r, kl =£l+i-r) then

fiETC\J and jS^O. Of course,  T-fi<ZTf\J is an ideal in  T and

3 We had originally proved Theorems 1, 2 and 3 over fields of characteristic zero.

Our present formulation was suggested by Professor Rosenberg.
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yET-P implies 7= Ei" £»''&'• Let 5 be the quasi-inverse of y in

K(G). If 5= ]T)j hig' (r^O), by comparing the terms of minimal de-

gree of 7, 5 and yd in

7 + 8 — y8 = 0

we see that Ar=0. Then S£F, that is, T ■/? is a quasi-regular ideal in

T.
Since T is a polynomial ring over a ring without nonzero nilpotent

elements, then T is semisimple [l ] contradicting our last result. Thus

aEJ implies a = 0, that is, K(G) is semisimple.

Suppose, now, G is a free abelian group with a finite number, say n,

of generators. If the semisimplicity of K(G') is proved in the case G'

is free abelian with n — 1 generators, then, since G = G'®Z, where Z

is infinite cyclic, we have K(G) = [K(G')](Z) and then our previous

reasoning proves K(G) is semisimple.

Let, now, G be any free abelian group, / the radical of K(G) and

aEJ- Let X = {xi\ he the set of generators of G; since only a finite

number of x,- may appear in a with nonzero coefficients, then a is

contained in K(G') where G' is a free abelian group generated by a

finite subset Y of X. Then K(G')-aQjr\K(G') is an ideal in K(G')

containing a, and K(G) is the group algebra [K(G')](G") where G"

is the free abelian subgroup of G generated by the elements of X— Y.

UyEK(G') a and 5 is the quasi-inverse of 7, 5= £/,#,- (fiEK(G'),

9iEG") then, if we call 0, = 1, from 7+ £/,-0<- X/y/,-0,- = 0 we obtain
y+fi—yfi = 0, that is, 7 has a quasi-inverse in K(G'), then K(G')-a

is a quasi-regular ideal in K(G'). Since G' is finitely generated, the

semisimplicity of K(G') previously proved implies a = 0, then J = 0

and -rv(G) is semisimple.

Theorem 2. If G is any commutative group and K is a semisimple

commutative algebra over the rational numbers, then K(G) is semisimple.

Proof. If G is a torsion group, we apply Lemmas 1 and 3 with

C=(l), then K(C)=K is semisimple by hypothesis. If G is not tor-

sion, then we take C = M (M as obtained in Lemma 5), then Lemma

5 and Theorem 1 assert K(C) is semisimple, the semisimplicity of

K(G) following as in the previous case.

Theorem 3. Let G be a group and Z its center. If G/Z is locally

finite and K is a semisimple commutative algebra over the rationals,

then K(G) is semisimple.

Proof. The semisimplicity of K(Z) is assured by Theorem 2,

then Lemmas 3 and 1 give the result of the theorem.
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Remarks 1. In Theorems 2 and 3, if G is a torsion group, we may

weaken the condition of K to be an algebra over the rationals by

imposing K to be uniquely divisible by the orders of each element in

G.
2. In the same theorems, if G is not torsion (in Theorem 3, the

local finiteness of G/Z implies Z is not torsion) then, in order to

apply Theorem 1, it is sufficient K to have no nonzero nilpotent ele-

ments.

3. From [3, X Theorem 6.2], we have that A'-w. dim K(G) =0 if

and only if w. dim^o K = 0. Thus, [2, Proposition 6] follows from

Lemmas 3 and 4. Since w. gl. dim K(G) =0 implies w. dim^o) K = 0,

hence K-w. dim A'(G) =0, then Lemmas 3 and 4 are applicable and

we find a new proof of Theorem 9 of [2].

References

1. S. A. Amitsur, Radicals of polynomial rings, Canadian J. Math. vol. 8 (1956)

pp. 355-361.
2. M. Auslander, On regular group rings, Proc. Amer. Math. Soc. vol. 8 (1957) pp.

658-664.

3. H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press,

1956.
4. M. Harada, Note on the dimension of modules and algebras, J. Inst. Poly-

technics, Osaka City Univ. vol. 7 (1956) pp. 17-27.

5. N. Jacobson, The radical and semisimplicity for arbitrary rings, Amer. J. Math,

vol. 67 (1945) pp. 300-320.

6. A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras, Trans. Amer.

Math. Soc. vol. 82 (1956) pp. 85-98.
7. J. von Neumann, On regular rings, Proc. Nat. Acad. U.S.A. vol. 22 (1936) pp.

707-713.

Universidad Nacional de la Plata and

The Institute for Advanced Study


