
INVERSION OF AN INTEGRAL TRANSFORM1

HARRY POLLARD AND HAROLD WIDOM

1. Introduction. It is the object of this note to give an inversion

formula for the integral transform,

/i x k(y)(b(x + y)dy, x > 0
o

under the assumptions:

(i)   kEL(0,   oo);

(ii)  &f^0 in the neighborhood of zero;

(iii)  the Laplace transform

/.  OO

e~'xk(x)dx
o

has no zeros in the closed right half-plane;

(iv) <pELp(0, oo) for some p in 1 £p^2.

Formally such a formula can be obtained as follows. Define <p and

k to be zero for negative values of the argument, and define / by the

equation in (1) for all real x. If we denote Fourier transformation by a

circumflex, i.e.

eitxg(x)dx
-00

it follows from (1) that

f(t) = H-m)-
Hence

l   rx      „ l   r°°        }(t)
<b(x) = —        e-»x<p(t)dt = —        e-i,x j— dt

ZirJ-x ZtJ^k k\ — t)

1   rx dt     rx
= 7T    e~ilx 77—;    eity fiyWy

_- dj{'+y)dy L. 5=0 *
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This last formula is clearly unsatisfactory since/(x) is given only for

x>0. However under our assumptions on k it happens that

/oo       gity

so the formula becomes

1       /• oo /» co       pity

*(*) = — I    /(* + y)dy I     77—r dt.
ztJo J _m k( — t)

The actual results which we shall prove, motivated by this formula,

are these

Theorem 1.   Under hypotheses (i)-(iv) the equation (1) is inverted by

(p) J      /» oo /.oo   git(y—8)— <|(|

<t>(x) = l.i.m.    lim — |    /(x + y)rfy |      —r-—-— dt.
«->o+   «->o+ 2tJq " -oo      «(— /)

Theorem 2.   Under hypotheses (i)-(iv) the equation (1) w inverted by

1      /• °° /• °°     1  _   g—ilt    gity—t\t\
<t>(x) =   lim    lim — I     /(x + y)Jy |-■ *,

J-^)+ «->o+Z7r«/o ^-oo        wt «( — /)

/or almost all x, and at all points of right-continuity of<j>.

An alternative technique, suggested by Sparenberg [3], seems diffi-

cult to apply.

2. Lemmas. We need Hayman's extension [l, Theorem 2] of the

Ahlfors-Heins principle.2

Lemma 1. If u(z) is subharmonic in the half-plane y>0 and if

(a) lim sup u(z) ^ 0,
z—*x

u(x + iy)
a = sup-

v>o        y

1
(b) ao = lim sup —     sup     u(z) < oo

r-»o> r   [z|=r;i/>0

then ao = max (a, 0) and lim u(rew)/r=a sin 8 uniformly for 0<8<ir

as r—>oo omitting an r-set of finite logarithmic length (i.e., a set E with

fEr~^dr< =o).

* The authors are indebted to Professor W. H. J. Fuchs for calling their attention

to this lemma, basic for their results.
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Lemma 2. Under the hypotheses (i)-(iii) imposed on k the function

1/1 (z) has the property

T7T = °(e<U')> e > °
k(z)

on a sequence of semi-circular arcs \z\ =rn, 0 5^0Sir, with rn—*<x as

n—>oo.

Note that k(z)=K(-iz) so that l/k(z)^0 lor y^O. We may sup-

pose that | h(z) | ^ 1 for y ̂  0.

It follows from hypotheses (i)-(iii) that k has the representation

i - i     y r °°   log | k(v) I
u(z) = log \k(x + iy)\   = — I --dti

ir J _M y2 + (x — »)2

for y>0. See, for example, Nyman [2, pp. 13, 29].

Since log | k(v)\ 5^0 it follows from the representation that u(z) ^0

and also that lim,,,,,, u(z)/y = 0. This confirms hypothesis (a) of

Lemma 1 and shows that a = 0. (b) is also a consequence of the repre-

sentation.

Hence

u(re*)
lim —- = 0
r—»» T

with the prescribed uniformity. This establishes the lemma.

Lemma 3.   Under the hypotheses (i)-(iii) lim,,^ log | k(iu)\ /u = 0.

This is an immediate consequence of the representation of u(z).

3. The inversion formulas. It follows from (1) and the hypotheses

(i), (iv) that

/(/) = *(-0*(0

where the Fourier transforms are taken in the appropriate sense.

Therefore (by imitating the proof of Theorem 59 in Titchmarsh

[4]) we have

<b(x) =   lim <pe(x) p.p.
«^o+

where

l   r /(/)
0,(3) = —        e-it*e-<\'\ J±— dt.

2wJ-„ k(-l)

Hence
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*.(*) = — I      -x-—— dt l.i.m. eu"J{y)dy
Z7T «/ -00        «(— 0 a-»«      J -a

(2) =lim7-       t, rt dt    <>ilyf(y)dy
o-*o= 2tt J—K      k( — /) J _o

(3) =  lim - I   /(y)<*y A
a->»  2.T J-a ^-00 «(.— ')

<4) ^l/' + W,!^"'
where q = p/(p — l). (2) is justified since e-<|t|/l( — <) is inLp(— oo , oo),

(3) by Fubini's theorem, and  (4)  because the inner integral as a

function of y is in Lq( — oo , oo).

Now let

/oo    ,>ity—t\t\

and consider the integral of

piwy— ew

-z- )

k( — w)

as a function of w, over the contour consisting of the intervals (0, R)

and (0, —iR) and the quadrant of the circle joining R and — iR.

If y<0 it follows by Lemma 2 that the integral over the quadrant

approaches zero as R = r„—> oo. Therefore

/t oo    gity—et                                    n rn    guy+itu

--dt =  lim    |      —t—;- du.
o     «( — /)          «-><» Jo      «(i«)

Similarly

/q     gity+tt                                               /» r„    eUy— ieu

^-dt = — lim    I      —-<f«.
-oo «( — 0                 »->»   Jo      «(i«)

Thus for y <0

/' r» eu" sin ew                 /•" euv sin ew
—:-du = 2i I      —-</«.

o        k(iu)                  J o        £(i«)

The last step is justified by Lemma 3 which enables us to conclude

also that

(3)

l.i.m. Rt(y) =0        on (— oo , -5)
«->o+
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for each 5>0. According to (4)

1   rK
cb(x) = lim — I    /(* + y)Rf(y)dy

«-»o+ 2irJ -x

and so

1   r°°
tb(x) = lim — I     f(x + y)R,(y)dy p.p.

«->o+ 2-ir J _j

for each 5>0. Consequently for each 5>0

1   rx

(5) <b(x + 8) = lim  + — I    f(x + y)Rf(y - h)dy
«-»0 27T J 0

and Theorem 1 follows.

We turn to the proof of Theorem 2. We have (by imitating the

proof of Theorem 19 of Titchmarsh [4]) <p(x) =l.i.m.(J!l0+ <pt(x), so

for any fixed x, <p(x+h) =l.i.m.^0+ <j>c(x+h) over any ^-interval (0, 6).

Therefore, by the argument leading to (5),

(i)    l    /•»
<p(x +h)= lim. — I    /(x + y)R,(y - h)dy,

e^o+ 2ir J o

so

(/.(x + h)dh =  lim — I   dh I    f'x + y)Rt(y - h)dy
0 «-K>+ 2-K Jo J 0

1 s* 00 y» S

=   lim — I     f(x + y)dy I   2?€(y - h)dh
t—>o+ 2;r •/ o "^ o

-  lim - I     /(x + y)<*y I      ——- -j—- dt
«->0 + Z7T •/ 0 ''-co *0f k\.~t)

and Theorem 2 follows.
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