INVERSION OF AN INTEGRAL TRANSFORM!
HARRY POLLARD AND HAROLD WIDOM

1. Introduction. It is the object of this note to give an inversion
formula for the integral transform,

(1) «m=jwwwam+w@, £>0

under the assumptions:
(i) REL(0, =);
(ii) k540 in the neighborhood of zero;
(iii) the Laplace transform

K(s) =fwe“"k(x)dx

has no zeros in the closed right half-plane;

(iv) ¢EL,(0, ) for some p in 1=Sp=2.

Formally such a formula can be obtained as follows. Define ¢ and
E to be zero for negative values of the argument, and define f by the
equation in (1) for all real x. If we denote Fourier transformation by a
circumflex, i.e.

20 = f eiteg(x)dx

it follows from (1) that

@) = E(—08().

1 —zlx R —tlz &_
a@=5;ﬁm S0l = ‘[w Tt

1 © dt ©
fe——m: . e“”f(y)dy

ffu+w®f rant
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This last formula is clearly unsatisfactory since f(x) is given only for
x>0. However under our assumptions on k it happens that

© eity
f —dt=0, y <0,
—w k(—1)
so the formula becomes
1 0 0 eily
x) = — x + y)d f — dt
00 = o [ e [

The actual results which we shall prove, motivated by this formula,
are these

THEOREM 1. Under hypotheses (1)—(iv) the equation (1) is inverted by
(p) ® pit(y—8)—elt

1
¢(x) = Lim. lim — f(x + y)dyf ——— .

50+ e—m0+ 27 —o0 ﬁ(—t)

THEOREM 2. Under hypotheses (1)—(iv) the equation (1) is inverted by

— p—ibt eiw—el tl

st E(—1)

1 0
¢(x) = lim lim — f(x + y)dyf dat,

504 -0+ 2T
for almost all x, and at all points of right-continuity of ¢.

An alternative technique, suggested by Sparenberg [3], seems diffi-
cult to apply.

2. Lemmas. We need Hayman's extension [1, Theorem 2] of the
Ahlfors-Heins principle.?

LemMmA 1. If u(z) is subharmonic in the half-plane vy >0 and if

(a) lim sup #(z) < 0,
z—z .
u(x + 1y)
a = sup ————
¥>0 y
, 1
(b) ap = limsup — sup u(z) <

T T |zl =r;p>0

then ap=max (a, 0) and lim u(re®)/r =a sin § uniformly for 0 <0 <
as r— o omitting an r-set of finite logarithmic length (i.e., a set E with
Ser-ldr< «).

% The authors are indebted to Professor W. H. J. Fuchs for calling their attention
to this lemma, basic for their results.
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LemMMA 2. Under the hypotheses (i1)—(iii) imposed on k the function
1/k(2) has the property

1
—— = O(e!¥) e>0
k(z) ’
on a sequence of semi-circular arcs |z| =r,, 0S0=<m, with r,—» as
n— o,

Note that £(z) = K(—1iz) so that 1/£(z) 0 for y=0. We may sup-
pose that | k(z)| < 1 for y=0.
It follows from hypotheses (i)—(iii) that £ has the representation

o © 1 k

for y>0. See, for example, Nyman [2, pp. 13, 29].

Since log | l@(v)| <0 it follows from the representation that #(z) <0
and also that lim,., %#(2)/y=0. This confirms hypothesis (a) of
Lemma 1 and shows that «=0. (b) is also a consequence of the repre-
sentation.

Hence

u(re®) — 0

im

T r
with the prescribed uniformity. This establishes the lemma.
LEMMA 3. Under the hypotheses (i)—(iii) lim,_,, log | k(iu)| /u=0.
This is an immediate consequence of the representation of u(z).

3. The inversion formulas. It follows from (1) and the hypotheses
(1), (iv) that

J@) = E(=e()

where the Fourier transforms are taken in the appropriate sense.
Therefore (by imitating the proof of Theorem 59 in Titchmarsh
[4]) we have

#(x) = lim ¢.(x) p-p-
€e—0+
where
1 10
J(x) = — — itz ,—e|t| — di.
28 2 _we ¢ k(—1)

Hence
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1 w0 p—itzpo—elt] (@) a

de(x) = ol T(_Tdt l;i_.gx. _ae“"f(y)dy
) - lim %%‘id, J e soray
o i fam
©) f flx 4 3)dy f ’ e;:i—:” dt,

where g=p/(p—1). (2) is justified since e=<!*1 /E(—1) isin L,(— o, ©),
(3) by Fubini’s theorem, and (4) because the inner integral as a
function of y is in L,(— «, ).

Now let
© eity—eltl
R = [T
() T

and consider the integral of

eiwy—-ew

b(—w)’
as a function of w, over the contour consisting of the intervals (0, R)
and (0, —ZR) and the quadrant of the circle joining R and —iR.

If y<O0 it follows by Lemma 2 that the integral over the quadrant
approaches zero as R=r,— «. Therefore

© eity—et Tn euu+i¢u
f ——dt = lim f — du.
o k(=1 n—owo J g E(zu)

0 et’ty+et Tn euu—-ieu
f _ dl = — lim — du.
— k( - l) n—w 0 l%(zu)

Similarly

Thus for y<0
. ™ e sin eu © ¥ sin eu
R(y) = 2i lim —  du=12i f — du.
n— 0 k(m) 0 ﬁ(zu)
The last step is justified by Lemma 3 which enables us to conclude
also that

(2)
Lim. R(y) =0 on (—w, —9§)
€e—04
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for each §>0. According to (4)

1 ©
$(x) = llm o J& + y)R(y)dy

T -

and so

1 00
¢(x) = lim e f(x + ¥)R(y)dy p-p-

=0+

for each 8§ >0. Consequently for each 6>0

1
©) o(x + 8) = hrr; oo f(x + ¥)R(y — d)dy
and Theorem 1 follows.

We turn to the proof of Theorem 2. We have (by imitating the
proof of Theorem 19 of Titchmarsh [4]) ¢(x) =1im.%y, ¢.(x), so
for any fixed x, ¢(x+4) =1.i.m.Py, ¢.(x+k) over any k- mterval (0, 8).
Therefore, by the argument leadmg to (5),

m 1
¢(x+h)—llm-2— f(x+y)R(y—h)dy,

>0+
SO
s
f o(x + k)dh = lim — dhf flx + MRy — k)dy
0 e—0+ 27
1
= lim — f(x + y)dyf Ry — h)dh
€e—0+ LT 0
© ® | — gidt gity—elt]
_ 1-1_f by [T A e
A, ST T RS

and Theorem 2 follows.
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