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W. E. DESKINS

A well-known result of G. Frobenius (cf. [2]) states that if 3C is a

normal subgroup of the finite group g, then an irreducible g-module

(relative to any base field %) either remains irreducible as an 3C-module

or decomposes into a direct sum of conjugate irreducible X-modules.

Simple examples readily demonstrate that the conclusion of this

theorem may hold even though 3C is not normal. In §1 a version of

the Frobenius result is stated and the converse considered. This opens

the question: What is the relationship between a group g and one of

its subgroups 3C if each irreducible g-module over a field g remains

irreducible as an 3C-module? It is shown in §2 that for "most" fields %

(the modular fields naturally cause a certain amount of difficulty)

the answer is that g is an extension of 3C by an abelian group such that

each conjugate class of 3C is also a conjugate class of g. To determine

whether this last property leads to the conclusion that g is the trivial

extension of 3C, extensions are considered in §3 and it is shown that

the answer is in general negative. However, using a result due to

M. Hall [4] it is proved that this latter property does imply that g

is the trivial extension of 3C in many cases.

Since results contingent on absolute irreducibility are used in

certain proofs,1 it will be assumed throughout this note that % is

always a splitting field for every irreducible representation of the

groups being discussed.

1. Preliminary remarks. Let 3C be a subgroup of the finite group g

and let 9Jc be a left (right) g-module with base field g. If 9c is a left

(right) 3C-submodule of 9Jc and if GE<3, then submodule G9c(9cG)

of 99c is said to be a conjugate of 9t relative to g. Obviously it need

not be an 3C-module.

Now the key to the Frobenius Theorem is the result [2 ]:

// 3C is a normal subgroup of g then an irreducible Q-module 9JJ con-

tains an irreducible OC-submodule 9t which has the property that each

conjugate of 9c relative to g is also an 3C-module.

Consideration of the converse proposition leads to the following:
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1 It was pointed out by the referee that Theorem 3, for example, may be false if

S is not a splitting field for every irreducible representation of G and H. The sym-

metric group on three elements, its normal subgroup, and the rational field illustrate

this possibility,

655



656 W. E. DESKINS [August

Theorem 1. If 3C is a subgroup of g such that each irreducible

{^-module 9Jc over a field ft contains an irreducible SZ-submodule U all of

whose conjugates relative to g are also VL-modules, then each irreducible

X-module remains irreducible as an K,-module, where 3C is the minimal

normal subgroup of g which contains 3C.

Let 9JJ be an irreducible left g-module. Since 3C is normal in g, 9Jc"

is a direct sum of conjugate irreducible left 3C-modules, 9c<, each of

dimension m relative to ft: SD^ = 9ci+ • • • +9c„, «2;1. On the other

hand, from the hypothesis 9Jc" contains an irreducible left 3C-sub-

module U all of whose conjugates relative to g are also 3C-modules,

necessarily irreducible. Now let G£g, HE5C-', then G\X is an 3C-module

and therefore (G-1iIG)U = G-W(GU) =G~1(GU) =U. So U, of dimen-
sion u over ft, is an irreducible 3C-module. Therefore m = u and since

each 9c< is also a left 3C-module it must remain irreducible as an

3C-module. As every irreducible 3C-module is 3£-isomorphic with a

submodule of a g-module, the result follows.

This interesting relationship between 3C and X. will be investigated

in the remainder of the paper.

2. Property 8. To simplify matters we introduce the following

definition. A subgroup 3C of the group g is said to possess property

3 relative to the field F if each irreducible g-module over ft remains

irreducible as an 3C-module.

Theorem 2. If X. possesses property 3 relative to ft then 3C is normal

in g and g/3C is an abelian group if either of the following conditions is

satisfied:
(i) The radical 9f(g) of the group algebra 21(g) of g over F equals

21(g) • 9c(3C), where 9c(3C) m the radical of 2l(3C), the group algebra of 3C

over g.

(ii)  The characteristic of § is p and 3C is a Sylow p-subgroup of Q.

Let § be the ideal of 2I(3C) which has as its basis the differences

Hi-Hj, all Hu HjEW- Then 3C is normal in g if and only if the left

ideal ? = 21(g) -3C is a two-sided ideal in 21(g). Now (i) implies that

£39t(g) since £Q9c(3C), so it will be sufficient to show that the

image 8 of 2 in 21(g) = 21(g) -9t(9) is an ideal. 21(9) contains an

algebra £>^2l(3C) and 3) = U033 with U^2l(X) -§ and of dimension

one over ft. Then 21(9) =I(g)£=2l(g)U+21(g)33, a direct sum of

left ideals of 21(9), with 2l(g)33^8. But 2l(g)U_and 8 are right
3e-modules, so if 33 is a minimal right ideal of_2l(g), hence an ir-

reducible right 3C-module, it must lie entirely in 2I(9)U or 8- Hence 8
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is also a right ideal of 1(g) and so 3C is normal in g. Furthermore

g/3C is represented isomorphically over 21(g) —8=21 (g)U which is

necessarily a sum of fields since It is one dimensional.

If (ii) is satisfied then all the irreducible representations of G are

one dimensional since the only irreducible representation of 3d is the

identity representation. Therefore there exists a minimal normal sub-

group 3C such that g/3C is abelian and 2l(g/X) is semisimple. It fol-

lows simply (cf.   [3])  that 3C is necessarily of order pa and hence
no_ nn
dv — UV.

If g is restricted so that 21(g) is semisimple then the following

deeper result may be obtained.

Theorem 3. If 3C is a subgroup of g possessing property d relative

to the field % of characteristic 0 or p, (p, o(G)) = 1, then each conjugate

class of 3C is also a conjugate class in g.

Let S(g) and S(3C) be the centers of 21(g) and 2l(3C) respectively.

We must show that S(3C) is a subalgebra of S(g). Let ? be a minimal

left ideal of 2f(g); hence it is an irreducible left 3C-module and so

there exists a primitive idempotent e£S(3C) such that e2I(3C)S = S.

Now 21(g) =2I(3C)-21(g) and e2f(3C)21(g) 22, so if £ is the set of all
minimal left ideals ? of 21(g) such that e2l(3C)? = ?, then e2I(3C)2I(g)

= Use£?. Since S(3C) may be written as (ei) © • • • ®(em), each e< a

primitive idempotent, then 21(g) =ei2I(3C)2I(g)+ • • ■ +em2I(3C)2l(g)

is a direct decomposition of 21(g) into left ideals. Observing that

ei — GeiG~l annihilates 21(g) from the left, any G£g, we conclude

that S(3C)CS(g).

Indicative of the inconclusiveness of the modular case is

Theorem 4. // 3C is a subgroup of g possessing property 8 over the

field )J of characteristic p and if all the irreducible representations of 3C

over 5 are one dimensional, then g is an extension of a p-group by an

abelian group of order q, (q, p) — \. Conversely, if g is an extension of

a p-group by an abelian group of order q, (q, p) = l, then any subgroup

3C of g possesses property 8 relative to afield of characteristic p.

Since an irreducible X-module has dimension one, property d im-

plies that j:ach irreducible g-module is one dimensional over %.

Therefore 21(g) = 21(g)-9t(g) is a commutative algebra. If g' is the

commutator subgroup of g and if £ is the ideal of 21(g) generated by

the differences d-Gj, all Gi, GjE<3', then clearly JC^(g). This

means that g' is a £-group (cf. [3]), and the remainder of the theorem

is obvious.
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Throughout the remainder of the paper the field ft will be assumed

to have characteristic 6 or p with (p, g) = l, g the order of g. Then

the next result completely characterizes property 8 over ft.

Theorem 5. Let 5C be a normal subgroup of g of order h and let X

contain s ^-conjugate classes. Then 3C possesses property 8 over ft if

and only if g contains ns ^-conjugate classes, where g = hn.

Let e be a primitive idempotent from the center of 21(3C). Then

3r = e2l(3C) is a minimal two-sided ideal of 2I(0C) of order t2. If 3C

possesses property 3, then by Theorem 3 e is a central idempotent

of 21(g) and therefore 33 =e21(3C) 21(g) is a two-sided ideal of 21(g)
of order nt2. Since X is orthogonal with 2I(3C) — X it follows that each

minimal 3C-submodule of 33 is isomorphic with a minimal 3C-sub-

module of X and hence is of order t. Then it follows from property 8

that each minimal left or right ideal of 33 is of order t, and therefore S3

is expressible as a direct sum of n two-sided ideals of 21(g), each of

order t2. Since the dimension of the center of 2l(3C) is 5 this implies

that 21(g) decomposes into a direct sum of ns minimal ideals. Hence

g contains ns conjugate classes.

Conversely, suppose g possesses ns conjugate classes. Since 3C has s

conjugate classes, 2I(3C)=Ji© • • • (BX, and this decomposition is

unique. Now if G£g, AEW.(X,), the mapping 8a: A^A0 = GAG~1 is

an automorphism of 2l(3C) and Xf is a minimal ideal Xj of 2I(3C).

Therefore, under the set of all automorphisms induced by inner

automorphisms of g, the minimal ideals X of 21 (3C) separate into non-

overlapping sets of transitivity, Sx, • ■ ■ , Sm. That is, if Si consists of

the ideals Xi,i, • • • , Xi.dii), then X% = Xik, 1 ̂ k^d(i), for any GEQ,
and given any pair XiP and Xiq there exists an element G in g such

that Xiq = Xfp. Then 33;=(£,m + • • • +Xi,d(i>W(S) is a two-sided
ideal of 21(g) of order nt2d(i), t\ the order of Xij.

Let 8 be a minimal left ideal of 33,-. Then 3^8^(0) for some j and

therefore, because of the transitivity of Si, for all j. Since X,j% is

necessarily of order e^ti and since XijXiP = djqXij, this implies that

the order of 8 is ^tid(i). Therefore a minimal two-sided ideal of 33<

is of order ^,t\[d(i)]2, and so no decomposition of 33i contains more

than n/d(i) two-sided ideals. Therefore 21(g) decomposes into a sum

of not more than n(\/d(\)+ ■ ■ ■ +l/d(m)) minimal ideals. How-

ever, since g contains ns conjugate classes, 21(g) decomposes into a

direct sum of ns minimal ideals. Hence d(l) = • • ■ =d(m) — 1, m — s,

and each minimal left ideal 8 of 33; is of order U. Since 8 is a left

2,-module whose order equals the order of a minimal left ideal of

Xi it follows that 3C possesses property 3.
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Berman has proved [l] that if 3C is a normal subgroup of g such

that g/3C is cyclic of order n and if each of sg-conjugate classes C,-

contained in 3C splits into hi 3C-conjugate classes, then g contains

«(Af1+ • • • +h,x) conjugate classes. This result and the previous

theorem yield a partial converse to Theorem 3:

Theorem 6. If g is an extension of X, by a cyclic group and if each

conjugate class of 3C is also a conjugate class of g, then 3C possesses

property 8 over %.

3. Group extensions by abelian groups. Obviously the trivial ex-

tension g of a group 3C by an abelian group Q, g = 3CXQ, contains a

normal subgroup 3C'==3C possessing property 8 over F. Is the trivial

extension the only one for which this is so? We shall see that the

answer to this depends on whether or not the order c of 3C is prime

to the order n of g/3C.

If 3C possesses property 8 in g then we have seen that 3C is normal

in g and that g induces class-preserving automorphisms on 3C. Then

the additional condition, (c, ») = 1, permits us to apply a result due

to M. Hall [4, Theorem 6.1] and to conclude that g is a trivial ex-

tension of 3C.

In the other direction we prove the following:

Lemma. If 3C is a group containing a q-subgroup GL, q a prime, in its

center, then there exists a nontrivial extension g of 3C such that g contains

a subgroup 3C'=3C possessing property 8 in g, g/3C' of order q.

Let A be a generator of a cyclic g-subgroup of 3C which is of

maximal order qr among those contained in the center of 3C. Let x

be an indeterminate and define g to be the set of all ordered pairs

(x', H) where 0^i<q, x° = l, and H is an element of 3C. Then mul-

tiplication in g is determined by the following definitions: (x, H0)q

= (1, A), where Ho is the identity element of 3C, and (x*, Hj)(xh, Hn)

= (xm, A'HjHn) where i+j = m+tq, 0^m<q. It is easy to verify

that g is a group containing a subgroup 3C' = (1, 3C)=3C possessing

property 8 in g. Furthermore g is not isomorphic with the trivial

extension of 3C since it contains a cyclic g-subgroup of order qr+1

in its center.

To summarize these results:

Theorem 7. If a subgroup 3C of a group g possesses property 8

relative to % then g may be a nontrivial extension of 3C but only if the

order of g/3C is not prime to the order of 3C.
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A RING ADMITTING MODULES OF LIMITED
DIMENSION

WILLIAM G. LEAVITT

Let K be a ring with unit. A module1 M over K is said to he finite

dimensional if it (i) is finitely based, and (ii) contains no infinite

independent set. For such a module there must exist [l, Theorem 7,

p. 245] an integer n such that all bases have length n (the invariant

basis number property), and no independent set has length greater

than n. It was shown in a recent paper [l, Theorem 6, p. 245] that

this property carries downward with decreasing length of basis. That

is: If K admits a module of finite dimension n, then every module over

K having a basis of length ^n is also finite dimensional.

It was remarked (in [l]) that this leaves open the possibility that

a ring could exist admitting only modules of limited dimension. That

is, for some fixed integer n there might exist a ring K such that a

module over K is finite dimensional if and only if it has a basis of

length ^w. It is the purpose of this paper to construct such a ring for

arbitrary n.

Let R be the ring of (noncommutative) polynomials generated

over the field of integers modulo 2 by a countably infinite set of sym-

bols \xi, yj}, with i = \, ■ ■ • , m = (n + 2)(n + \);j=\, 2, • • • , where

n is the fixed integer chosen. Let R' be the subring of R generated by

the {x;}. It is desired to order a (suitably restricted) set of w-dimen-

sional row vectors of members of R'. Begin by ordering the set of all
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1 Throughout this paper "module" will mean "left module."


