A NOTE ON THE RELATIONSHIP BETWEEN CERTAIN
SUBGROUPS OF A FINITE GROUP

W. E. DESKINS

A well-known result of G. Frobenius (cf. [2]) states that if 3C is a
normal subgroup of the finite group G, then an irreducible G-module
(relative to any base field §) either remains irreducible as an 3¢-module
or decomposes into a direct sum of conjugate irreducible 3¢-modules.
Simple examples readily demonstrate that the conclusion of this
theorem may hold even though 3¢ is not normal. In §1 a version of
the Frobenius result is stated and the converse considered. This opens
the question: What is the relationship between a group G and one of
its subgroups 3¢ if each irreducible g-module over a field § remains
irreducible as an J¢-module? It is shown in §2 that for “most” fields
(the modular fields naturally cause a certain amount of difficulty)
the answer is that G is an extension of 3¢ by an abelian group such that
each conjugate class of 3C is also a conjugate class of G. To determine
whether this last property leads to the conclusion that § is the trivial
extension of 3C, extensions are considered in §3 and it is shown that
the answer is in general negative. However, using a result due to
M. Hall [4] it is proved that this latter property does imply that G
is the trivial extension of 3¢ in many cases.

Since results contingent on absolute irreducibility are used in
certain proofs,! it will be assumed throughout this note that § is
always a splitting field for every irreducible representation of the
groups being discussed.

1. Preliminary remarks. Let 3C be a subgroup of the finite group §
and let I be a left (right) g-module with base field §. If N is a left
(right) 3C-submodule of I and if GEG, then submodule GR(NG)
of I is said to be a conjugate of N relative to . Obviously it need
not be an 3¢-module.

Now the key to the Frobenius Theorem is the result [2]:

If 3C is a normal subgroup of G then an irreducible G-module M con-
tains an irreducible 3C-submodule N which has the property that each
conjugate of N relative to G is also an 3C-module.

Consideration of the converse proposition leads to the following:
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! It was pointed out by the referee that Theorem 3, for example, may be false if
& is not a splitting field for every irreducible representation of G and H. The sym-
metric group on three elements, its normal subgroup, and the rational field illustrate
this possibility.
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THEOREM 1. If 3C is a subgroup of G such that each irreducible
G-module M over a field §F contains an irreducible 3C-submodule 1 all of
whose conjugates relative to G are also 3¢-modules, then each irreducible
K-module remains irreducible as an IC-module, where X 1s the minimal
normal subgroup of G which contains 3C.

Let M be an irreducible left g-module. Since X is normal in G, M
is a direct sum of conjugate irreducible left X-modules, N, each of
dimension m relative to §: M=%+ - - - +N,, n=1. On the other
hand, from the hypothesis I contains an irreducible left 3C-sub-
module U all of whose conjugates relative to G are also J¢-modules,
necessarily irreducible. Now let GEG, HE 3C; then GU is an JC-module
and therefore (GT'HG)U =G 'H(GIl) =G~}(GUl) =U. So U, of dimen-
sion # over §, is an irreducible X-module. Therefore m =u and since
each N; is also a left 3¢-module it must remain irreducible as an
je-module. As every irreducible X-module is X-isomorphic with a
submodule of a g-module, the result follows.

This interesting relationship between 3¢ and & will be investigated
in the remainder of the paper.

2. Property 9. To simplify matters we introduce the following
definition. A subgroup 3¢ of the group G is said to possess property
g relative to the field F if each irreducible G-module over § remains
irreducible as an 3¢-module.

THEOREM 2. If 3C possesses property g relative to § then 3C is normal
in G and G/3C is an abelian group if either of the following conditions is
satisfied:

(i) The radical R(G) of the group algebra A(Q) of G over F equals
A(Q) - R(3C), where R(3C) is the radical of A(3), the group algebra of I
over §.

(ii) The characteristic of § is p and 3¢ is a Sylow p-subgroup of G.

Let © be the ideal of A(3¢) which has as its basis the differences
H;—H;, all H;, H;&3. Then 3 is normal in § if and only if the left
ideal =9(Q) 3¢ is a two-sided ideal in A(G). Now (i) implies that
LOR(Q) since ‘SZ)DER(JC), so it will be sufficient to show that the
image € of € in A(Q) =A(G) —R(Q) is an ideal. A(G) contains an
algebra D=J[(5¢) and D=US B with U=A(3¢) — P and of dimension
one over §. Then A(g)=A(Q)D= 2[(9)11+2[(9)Q3 a direct sum of
left ideals of (Q), with A(Q)B=R. But 2[(9)11 and € are rlght
3c-modules, so if ¥ is a minimal right ideal of 2[(9) hence an ir-
reducible right 3¢-module, it must lie entirely in %(g)U or Q. Hence €
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is also a right ideal of 3(Q) and so 3¢ is normal in G. Furthermore
G/3C is represented isomorphically over %A(g) —{=39[(g)U which is
necessarily a sum of fields since U is one dimensional.

If (ii) is satisfied then all the irreducible representations of G are
one dimensional since the only irreducible representation of 3 is the
identity representation. Therefore there exists a minimal normal sub-
group X such that G/X is abelian and A(G/X) is semisimple. It fol-
lows simply (cf. [3]) that & is necessarily of order p* and hence
X=3.

If § is restricted so that A(G) is semisimple then the following
deeper result may be obtained.

THEOREM 3. If 3C is a subgroup of G possessing property 9 relative
to the field § of characteristic 0 or p, (p, 0(G)) =1, then each conjugate
class of 3¢ is also a conjugate class in G.

Let €(g) and €(3¢) be the centers of A(G) and A(3) respectively.
We must show that €(3C) is a subalgebra of €(G). Let € be a minimal
left ideal of 2(G); hence it is an irreducible left J¢-module and so
there exists a primitive idempotent e©@€(3C) such that e ()R =L.
Now A(G) =A(3e) -A(G) and A(3)A(G) DL, so if £ is the set of all
minimal left ideals € of 2(G) such that eA(3)% =, then eA(3C)A(Q)
=Ugc g Since €(3) may be written as (&) ® - - - @ (en), each e; a
primitive idempotent, then A(g) =e,A(F)A(G) + - - - +eA(F)AQ)
is a direct decomposition of A(G) into left ideals. Observing that
e;—Ge,G™! annihilates A(G) from the left, any GEG, we conclude
that €(3¢) CE(Q).

Indicative of the inconclusiveness of the modular case is

THEOREM 4. If 3C is a subgroup of G possessing property 3 over the
field § of characteristic p and if all the irreducible representations of 3¢
over § are one dimensional, then G is an extension of a p-group by an
abelian group of order g, (g, p) =1. Conversely, if G is an extension of
a p-group by an abelian group of order q, (g, p) =1, then any subgroup
3¢ of G possesses property 3 relative to a field of characteristic p.

Since an irreducible J¢-module has dimension one, property 9 im-
plies that each irreducible G-module is one dimensional over .
Therefore A(G) =A(G) —R(Q) is a commutative algebra. If G’ is the
commutator subgroup of G and if ¥ is the ideal of %A(G) generated by
the differences Gi—Gj, all G, G;E€¢/, then clearly CR(G). This

means that G’ is a p-group (cf. [3]), and the remainder of the theorem
is obvious.
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Throughout the remainder of the paper the field § will be assumed
to have characteristic 0 or p with (p, g) =1, g the order of G. Then
the next result completely characterizes property 9 over {.

THEOREM 5. Let 3C be a normal subgroup of G of order h and let 3C
contain s 3C-conjugate classes. Then 3C possesses property 9 over § if
and only if G contains ns G-conjugate classes, where g=hn.

Let e be a primitive idempotent from the center of 2(3C). Then
T =eA(3C) is a minimal two-sided ideal of A(3) of order ¢% If 3¢
possesses property 9, then by Theorem 3 e is a central idempotent
of A(Q) and therefore B=eA(3)A(G) is a two-sided ideal of A(Q)
of order nt?. Since ¥ is orthogonal with 2(3¢) — < it follows that each
minimal JC-submodule of ¥ is isomorphic with a minimal JC-sub-
module of T and hence is of order £. Then it follows from property 4
that each minimal left or right ideal of B is of order ¢, and therefore B
is expressible as a direct sum of # two-sided ideals of A(G), each of
order £2. Since the dimension of the center of A(3C) is s this implies
that A(G) decomposes into a direct sum of #s minimal ideals. Hence
G contains #s conjugate classes.

Conversely, suppose G possesses ns conjugate classes. Since JC has s
conjugate classes, () =T ;@ - - - & T, and this decomposition is
unique. Now if GEG, 4 €A(3¢), the mapping Og: A—AC=GAG™" is
an automorphism of (3¢) and I{ is a minimal ideal T, of A(5C).
Therefore, under the set of all automorphisms induced by inner
automorphisms of G, the minimal ideals T of 2(3C) separate into non-
overlapping sets of transitivity, Si, - - -, Sm. That is, if S; consists of
the ideals Ti, - « -, Tiacoy, then TI=Ta, 1 Sk =d@), for any GESG,
and given any pair €;, and Ty, there exists an element G in G such
that T;,=3%. Then B;=(Tin+ - - - +Tiaw)A(Q) is a two-sided
ideal of UA(Q) of order nf;d(), £ the order of T;.

Let € be a minimal left ideal of 8;. Then ;2 (0) for some j and
therefore, because of the transitivity of S; for all j. Since Z,;2 is
necessarily of order =¢; and since £;;T;,=0;,Ty;, this implies that
the order of € is =t.d(7). Therefore a minimal two-sided ideal of B;
is of order =#[d(:)]? and so no decomposition of B; contains more
than n/d(i) two-sided ideals. Therefore 2(G) decomposes into a sum
of not more than n(1/d(1)+ - - - +1/d(m)) minimal ideals. How-
ever, since G contains ns conjugate classes, %(G) decomposes into a
direct sum of #s minimal ideals. Hence d(1)= - « - =d(m) =1, m=s,
and each minimal left ideal € of B; is of order #;. Since & is a left
¥ ;-module whose order equals the order of a minimal left ideal of
¢, it follows that 3C possesses property 9.
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Berman has proved [1] that if 3 is a normal subgroup of G such
that G/3C is cyclic of order #» and if each of sG-conjugate classes C;
contained in 3C splits into k; JC-conjugate classes, then G contains
n(h{*+ - -« +h") conjugate classes. This result and the previous
theorem yield a partial converse to Theorem 3:

THEOREM 6. If G is an extension of 3C by a cyclic group and if each
conjugate class of 3C is also a comjugate class of G, them 3C possesses
property 9 over §.

3. Group extensions by abelian groups. Obviously the trivial ex-
tension G of a group 3 by an abelian group @, G=3CX Q, contains a
normal subgroup 3¢'=<3C possessing property 9 over F. Is the trivial
extension the only one for which this is so? We shall see that the
answer to this depends on whether or not the order ¢ of 3C is prime
to the order % of g/3C.

If 3C possesses property 9 in § then we have seen that 3C is normal
in G and that G induces class-preserving automorphisms on 3¢. Then
the additional condition, (¢, #) =1, permits us to apply a result due
to M. Hall [4, Theorem 6.1] and to conclude that G is a trivial ex-
tension of JC.

In the other direction we prove the following:

LEMMA. If 3C is a group containing a g-subgroup @, q a prime, in its
center, then there exists a nontrivial extension G of 3C such that G contains
a subgroup 3'=23C possessing property 9 in G, G/3C’ of order q.

Let A4 be a generator of a cyclic ¢g-subgroup of 3 which is of
maximal order ¢" among those contained in the center of J¢. Let x
be an indeterminate and define G to be the set of all ordered pairs
(x%, H) where 0=:1<gq, x°=1, and H is an element of 3¢. Then mul-
tiplication in G is determined by the following definitions: (x, Hy)¢
=(1, A), where H, is the identity element of 3¢, and (x¢, H;)(x*, H,)
= (xm, A*H;H,) where 1+j=m+1tgq, 0Sm<q. It is easy to verify
that G is a group containing a subgroup 3¢’ = (1, 3C)=23C possessing
property g in G. Furthermore G is not isomorphic with the trivial
extension of JC since it contains a cyclic ¢g-subgroup of order g¢*+!
in its center.

To summarize these results:

THEOREM 7. If a subgroup 3C of a group G possesses property 4
relative to § then G may be a nontrivial extension of 3¢ but only if the
order of G/3C is not prime to the order of 3C.
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A RING ADMITTING MODULES OF LIMITED
DIMENSION

WILLIAM G. LEAVITT

Let K be a ring with unit. A module! M over K is said to be finite
dimensional if it (i) is finitely based, and (ii) contains no infinite
independent set. For such a module there must exist [1, Theorem 7,
p. 245] an integer n such that all bases have length » (the invariant
basis number property), and no independent set has length greater
than 7. It was shown in a recent paper [1, Theorem 6, p. 245] that
this property carries downward with decreasing length of basis. That
is: If K admits a module of finite dimension n, then every module over
K having a basis of length <n is also finite dimensional.

It was remarked (in [1]) that this leaves open the possibility that
a ring could exist admitting only modules of limited dimension. That
is, for some fixed integer n there might exist a ring K such that a
module over K is finite dimensional if and only if it has a basis of
length <. It is the purpose of this paper to construct such a ring for
arbitrary #.

Let R be the ring of (noncommutative) polynomials generated
over the field of integers modulo 2 by a countably infinite set of sym-
bols {x:, y;}, withi=1, - - - ,m=(n+2)(n+1);j=1,2, - - -, where
n is the fixed integer chosen. Let R’ be the subring of R generated by
the {x:}. It is desired to order a (suitably restricted) set of n-dimen-
sional row vectors of members of R’. Begin by ordering the set of all
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t Throughout this paper “module” will mean “left module.”



