This proves $x y \in A$ and similarly $y x \in A$. Since I_{f} is obviously closed under addition, it is a two sided ideal. An application of Lemma 3 proves that A is commutative.

Bibliography

1. N. Jacobson and C. E. Rickart, Jordan homomorphism of rings, Trans. Amer. Math. Soc. vol. 69 (1950) pp. 479-502.
2. J. L. Kelley and R. L. Vaught, The positive cone in Banach algebras, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 44-55.
3. M. Krein and S. Krein, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS. N. S. vol. 27 (1940) pp. 427-430.
4. S. Sherman, Order in operator algebras, Amer. J. Math. vol. 73 (1951) pp. 227232.

University of California at Los Angeles

A NOTE ON VALUED LINEAR SPACES

PAUL CONRAD

Banaschewski [1] has given a simple and elegant proof of Hahn's embedding theorem for ordered abelian groups. His method can be used to prove the author's generalization of Hahn's theorem [2, p. 11]. In this note we make use of Banaschewski's method to prove a special case of the author's theorem (which is also a generalization of Hahn's theorem) that has been proven by Gravett [3].

Let (L, Δ, d) be a valued linear space [3]. That is, L is a vector space over a division ring K, Δ is a linearly ordered set with minimum element θ, and d is a mapping of L onto Δ such that for all $x, y \in L$, $d(x)=\theta$ if and only if $x=0, d(x)=d(k x)$ for all $0 \neq k \in K$, and $d(x+y)$ $\leqq \operatorname{Max}[d(x), d(y)]$. For each $\delta \in \Delta$, let $C^{\delta}=\{x \in L: d(x) \leqq \delta\}$ and let $\bar{C}_{\delta}=\{x \in L: d(x)<\delta\}$. Let W be the vector space of all mappings f of Δ into the join of the spaces C^{δ} / C_{δ} for which $f(\delta) \in C^{\delta} / C_{\delta}$ and $R_{f}=\left\{\delta \in \Delta: f(\delta) \neq C_{\delta}\right\}$ is an inversely well ordered set. W is a subspace of the unrestricted direct sum V of the C^{δ} / C_{δ}. W is also a valued linear space (W, Δ, d^{\prime}), with $d^{\prime}(f)$ the largest $\delta \in R(f)$.

Received by the editors February 1, 1958.

Theorem. There exists an isomorphism $x \rightarrow \bar{x}$ of L into W. Moreover, if $d(x)=\alpha$, then $\bar{x}(\alpha)=C_{\alpha}+x$ and $\bar{x}(\delta)=C_{\delta}$ for all $\alpha<\delta \in \Delta$. Thus this isomorphism is value-preserving.

Proof. Let \mathfrak{S} be the set of all subspaces of L. There exists [1 , Lemma 4, p. 431] a mapping π of \mathfrak{S} into \mathfrak{S} such that for all $C, D \in \mathfrak{S}$, $C \oplus \pi(C)=L$ and if $C \subseteq D$, then $\pi(C) \supseteq \pi(D)$. For $x \in L$ and $\delta \in \Delta$, let $\bar{x}(\delta)=C_{\delta}+x_{\delta}$, where $L=C^{\delta} \oplus \pi\left(C^{\delta}\right)$ and x_{δ} is the component of x in C^{δ}. Then $\bar{x} \in V$ and it follows easily that the mapping $x \rightarrow \bar{x}$ is an isomorphism of L into V. If $\alpha=d(x)<\delta$, then $x \in C^{\alpha} \subseteq C_{\delta}$, hence $\bar{x}(\alpha)=C_{\alpha}+x$ and $\bar{x}(\delta)=C_{\delta}$. To complete the proof it suffices to show that $R_{\bar{x}}$ is an inversely well ordered set (for each $0 \neq x$ in L). Let Γ be a nonempty subset of $R_{\dot{x}}$, and let C be the join of the C^{r} for all γ in $\Gamma . L=\pi(C) \oplus C$, and $x=y+z$ where $y \in \pi(C)$ and $z \in C . d(z)$ is the greatest element in Γ. For if $d(z)<\gamma \in \Gamma$, then $\bar{z}(\gamma)=C_{\gamma}$, and since $\pi\left(C^{\gamma}\right) \supseteq \pi(C), \bar{y}(\gamma)=C_{\gamma}$. But then $C_{\gamma}=\bar{y}(\gamma)+\bar{z}(\gamma)=\bar{x}(\gamma) \neq C_{\gamma}$.

If, as in [2], Δ is partially ordered and d is multiple valued, then practically the same proof gives the embedding theorem [2, p. 11].

References

1. Von Bernhard Banaschewski, Totalgeordnete Moduln, Arch. Math. vol. 7 (1956) pp. 430-440.
2. P. Conrad, Embedding theorems for abelian groups with valuations, Amer. J. Math. vol. 75 (1953) pp. 1-29.
3. K. A. H. Gravett, Valued linear spaces, Quart J. Math. Oxford Ser. (2) vol. 6 (1955) pp. 309-315.

Tulane University

