This proves $xy \in A$ and similarly $yx \in A$. Since I_f is obviously closed under addition, it is a two sided ideal. An application of Lemma 3 proves that A is commutative.

BIBLIOGRAPHY

- 1. N. Jacobson and C. E. Rickart, Jordan homomorphism of rings, Trans. Amer. Math. Soc. vol. 69 (1950) pp. 479-502.
- 2. J. L. Kelley and R. L. Vaught, The positive cone in Banach algebras, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 44-55.
- 3. M. Krein and S. Krein, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS. N. S. vol. 27 (1940) pp. 427-430.
- 4. S. Sherman, Order in operator algebras, Amer. J. Math. vol. 73 (1951) pp. 227-232.

University of California at Los Angeles

A NOTE ON VALUED LINEAR SPACES

PAUL CONRAD

Banaschewski [1] has given a simple and elegant proof of Hahn's embedding theorem for ordered abelian groups. His method can be used to prove the author's generalization of Hahn's theorem [2, p. 11]. In this note we make use of Banaschewski's method to prove a special case of the author's theorem (which is also a generalization of Hahn's theorem) that has been proven by Gravett [3].

Let (L, Δ, d) be a valued linear space [3]. That is, L is a vector space over a division ring K, Δ is a linearly ordered set with minimum element θ , and d is a mapping of L onto Δ such that for all $x, y \in L$, $d(x) = \theta$ if and only if x = 0, d(x) = d(kx) for all $0 \neq k \in K$, and $d(x+y) \leq \max [d(x), d(y)]$. For each $\delta \in \Delta$, let $C^{\delta} = \{x \in L : d(x) \leq \delta\}$ and let $C_{\delta} = \{x \in L : d(x) < \delta\}$. Let W be the vector space of all mappings f of Δ into the join of the spaces C^{δ}/C_{δ} for which $f(\delta) \in C^{\delta}/C_{\delta}$ and $R_f = \{\delta \in \Delta : f(\delta) \neq C_{\delta}\}$ is an inversely well ordered set. W is a subspace of the unrestricted direct sum V of the C^{δ}/C_{δ} . W is also a valued linear space (W, Δ, d') , with d'(f) the largest $\delta \in R(f)$.

THEOREM. There exists an isomorphism $x \rightarrow \bar{x}$ of L into W. Moreover, if $d(x) = \alpha$, then $\bar{x}(\alpha) = C_{\alpha} + x$ and $\bar{x}(\delta) = C_{\delta}$ for all $\alpha < \delta \in \Delta$. Thus this isomorphism is value-preserving.

PROOF. Let $\mathfrak S$ be the set of all subspaces of L. There exists [1, Lemma 4, p. 431] a mapping π of $\mathfrak S$ into $\mathfrak S$ such that for all $C, D \in \mathfrak S$, $C \oplus \pi(C) = L$ and if $C \subseteq D$, then $\pi(C) \supseteq \pi(D)$. For $x \in L$ and $\delta \in \Delta$, let $\bar{x}(\delta) = C_{\delta} + x_{\delta}$, where $L = C^{\delta} \oplus \pi(C^{\delta})$ and x_{δ} is the component of x in C^{δ} . Then $\bar{x} \in V$ and it follows easily that the mapping $x \to \bar{x}$ is an isomorphism of L into V. If $\alpha = d(x) < \delta$, then $x \in C^{\alpha} \subseteq C_{\delta}$, hence $\bar{x}(\alpha) = C_{\alpha} + x$ and $\bar{x}(\delta) = C_{\delta}$. To complete the proof it suffices to show that $R_{\bar{x}}$ is an inversely well ordered set (for each $0 \neq x$ in L). Let Γ be a nonempty subset of $R_{\bar{x}}$, and let C be the join of the C^{γ} for all γ in Γ . $L = \pi(C) \oplus C$, and x = y + z where $y \in \pi(C)$ and $z \in C$. d(z) is the greatest element in Γ . For if $d(z) < \gamma \in \Gamma$, then $\bar{z}(\gamma) = C_{\gamma}$, and since $\pi(C^{\gamma}) \supseteq \pi(C)$, $\bar{y}(\gamma) = C_{\gamma}$. But then $C_{\gamma} = \bar{y}(\gamma) + \bar{z}(\gamma) = \bar{x}(\gamma) \neq C_{\gamma}$.

If, as in [2], Δ is partially ordered and d is multiple valued, then practically the same proof gives the embedding theorem [2, p. 11].

REFERENCES

- 1. Von Bernhard Banaschewski, Totalgeordnete Moduln, Arch. Math. vol. 7 (1956) pp. 430-440.
- 2. P. Conrad, Embedding theorems for abelian groups with valuations, Amer. J. Math. vol. 75 (1953) pp. 1-29.
- 3. K. A. H. Gravett, Valued linear spaces, Quart J. Math. Oxford Ser. (2) vol. 6 (1955) pp. 309-315.

TULANE UNIVERSITY