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1. Introduction. The author proved in a previous paper [2] that

if X is a real linear space with a very rudimentary topology and if SF

is the family of all translates of a set C with an extreme point such

that the intersection of any two sets in ff is another set in fF then C

is a convex cone. A partial converse of that theorem is given in this

note. It is shown that if C is a cone and if x, yEX exist such that

(x + C)f~\(y + C) is a cone K, then there exists a zEX such that

K = z + C. In §3 examples of cones C having this property are dis-

cussed.

Let X be a linear space with real scalars. A straight line through

the origin 6 is defined as the set of all elements {yx}, — oo <y< oo

where x is any point of the set x^d. Straight lines not through the

origin will be defined as translates of lines through 6. Alternatively,

a line joining x and y in X, x ^ y can be defined  as the set

iax + (l— a)y — oo <«< oo J. The ray from x through y is the set

ay + (l— a)x a^O}. The segment joining x and y is the set

ay + (l —a)x O^Sag 1}. A subset A EX is linearly closed in X [2] if

every line through a point of A intersects A in a line, ray, segment

or a single point. Complements of such sets are linearly open. A

hyperplane in X is a maximal proper linearly closed subspace of X.

A cone C in X with vertex d is a set such that if xEC, \xEC lor all

X^O. We shall make extensive use of this geometric terminology

and open and closed sets in X refer to the quasi topology which has

been defined above.

2. The principal theorem.

Theorem 1. Let C be a closed convex cone with vertex 6 in a linear

space X. Let x, yEX, x^y have the property that there exists a zEX

and a cone K with vertex at the origin such that (x + C)C\(y + C)

= z+K. ThenK = C.

Proof. By the homogeneous structure of X it may be assumed

that x=0 and that Cr\(y + C) =z+K. Evidently CC\(y + C) is closed
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and convex. Also by the convexity of C, since zEC and zEy + C,

z + CCCr\(y + C) = z + K. Thus it must be shown that
z + CDCC\(y + C)=z+K. Assume that x'EX exists with x'Ez+K,

x'Ez+C. Then there exists an open set N with x'EN, Nf~\(z + C)

void since z+C is closed and x'Ez + C. Since C is a cone, for any

a>0, aC=C and ay + C = ay+aC = a(y + C). Thus CC\(ay + C)

= (aC) C\ a(y + C). However, by an elementary argument,

(aC) n a(y + C) = a[C C\ (y + C)] = a(z + K) and a(z + K)

= az+aK = az+K since K is a cone and K = aK for a>0. Thus

CC\(ay + C)=az+K and CC\(ay + C) is a cone for any a>0. Let

Ne = N—x' and let a>0 be chosen sufficiently small to insure that

azENe, a(y — z)ENe. Since x'Ez+K, x" = x' + (a — l)zE(a — l)z

+ (z+K)=az+K. Also

(x" + Ne) r\ (az + C) = (x' + (a - 1)2 + Ne) C\ (z + (a - l)z + C)

is void since the sets x' + A^ and z + C have a void intersection by

the choice of N = x'+Ne. Since CC\(ay + C) =az+K, x"ECC\(ay + C)

and x" E C, x" E ay + C. However, for any point u E C,

(u+Ne)f~s\(az + C) is nonvoid since az+uEaz + C and (az+u) —u

= azEN6. Thus (az+u)Eu+Ne and az+uE(u+Ne)C\(az + C).

Since x"E<xz+KCC, (x" + Ne)f~\(az + C) is nonvoid and since

(x"+Nt))r\(az+C)=[x' + (a-l)z + Ng]r\[z + (a-l)z+C], (x'+Ne)

r\(z + C)=Nf~\(z + C) is nonvoid contrary to assumption. Thus

x'Ez + C and z+KCz + C. Hence K = C.

A C-cone [l] is a cone having the property that for any x, yEX,

there exists zEX with (x+C)r\(y + C)=z+C. Thus the previous

theorem gives rise to the following corollary.

Corollary. If C is a closed cone such that for any two elements

x, yEX (x + C)C\(y + C) is a cone, then C is a C-cone.

Theorem 1 also yields slight generalizations of the characterization

theorems for L and C spaces given in [3] and [l]. In these theorems

the hypotheses that the cones which characterize the spaces be C-

cones can be replaced by the slightly less restrictive hypotheses of

the preceding corollary.

3. Examples of cones with property P.

Definition. A cone C with vertex 8 has property T if there exists

xECV(-C) and yEX such that CC\(x+C) =y + C.
Certain cones having property T are investigated in this section

and an example of the use of such a cone in the structure of function

spaces is given. A more complete investigation of the structure of such

cones and their applications is planned in a subsequent paper.
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Theorem 2. Let H be a hyper plane in X and let Ch be any closed

convex cone in II with vertex 9. Let xEX\H and let r be the ray from

9 through x. Let C be the convex set determined by r and Ch- Then C is

a closed convex cone such that if yECn, y^9, and L is the two space

determined by 6, x,y, then for any uEL there exists zEL with CC\(u + C)

= z + C.

Proof. If uECU(-C) the conclusion is obvious and z = u or

z = 9. Assume MflCU(-C) and let r' he the ray from 9 through y.

By elementary arguments it can be seen that either (u+r)f~\r' or

(u+r')C\r is nonvoid. By making a translation of the vertex and an

interchange of C and u + C if necessary, it can always be assumed

that (u+r')f~\r is nonvoid. Let z=(u+r')(~\r. Then zEC(~\(u + C).

It can easily be established by elementary arguments that if r" is a

ray lying entirely in C then any translate of r" by a point of C also

lies in C. Making use of this fact, we show that CC\(u + C) is a cone

and hence by Theorem 1, a translate of C. Let wEC(~\(u + C). By

construction of C this implies the existence of real numbers a,

Ogagl and 7>1 such that w=av + (\ — a)v' where v = yz and

v'ECh- If it can be shown that w — zEC then the ray from 9 through

w — zEC and hence the ray from z through w is in C. However,

w = ayz+(l —a)v', w — z = ayz + (l — a)v' — z = (ay — l)z+ (I —a)v'. Let

v" = (l/y)v + (l-l/y)v' = z+(l-l/y)v'. Then v"EC and v"Ez+H

= u+H. Since each component of C\(z+H) is convex, the half open

segment, {/3z/ + (l —p)v"\ 0 </3^ 1} lies entirely in the component of

C\(z+H) which contains Ch and hence no point of this set lies in

CC\(u + C). Thus since wECC\(u + C) and since the points of the

segment from v to v' with a<l/y lie between v" and v', a~^\/y.

Hence ay —1^0. Thus since z, v'EC, w — zEC and the entire ray

from 9 through w — z is in C. Thus the ray from z through w lies in C.

A similar argument shows that the ray from z through w also lies in

m + C. Thus for any point wEC(~\(u + C) the ray from z through w

lies in CC\(u + C). This shows that CC\(u + C) is a closed convex

cone with vertex z. By Theorem 1, Cr\(u + C)=z + C.

Theorem 3. Let X, H, CH be defined as in Theorem 2. Let x, yEX\H

be chosen in such a way that the line segment joining x and y intersects

Ch in a point distinct from 9. Let rx, ry be rays from 9 through x and y

respectively and let C be the cone which is the convex hull of rx, ry, Ch-

Let L(x, y) be the two dimensional subspace of X determined by 9, x, y

and let uEL(x, y). Then there exists zEL(x, y) such that C(~\(u + C)

= z + C.

Proof. If «GCU(-C) then the theorem is obvious and z = m or

z=0. It can thus be assumed with no loss of generality that u, x are
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in the same component of X\H. Thus rx(~\(u+rv) is nonvoid by con-

struction. Let z = rx(~\(u+ry). It will be shown as in the previous

theorem that C(~\(u + C) is a cone with vertex at z and is hence equal

to z + C. Let wECC\(u + C). It must be shown that the ray from z

through w is in C(~\(u + C). If wEz+H or z+H separates w from

H, the same procedure as was used in Theorem 2 shows that w — zEC.

Since u + C is a translate of C, w — z+uEu + C and the rays from 8,

u through w — z, w — z+u respectively lie in C and u + C. Thus the

ray from z through w also lies in C and u + C and hence in CC\(u + C).

If w lies on the other side of z+H, a similar argument can be applied

to u + C and C and the ray from z through w lies in Cr\(u + C). Thus

CC\(u + C) is a cone with vertex z and by Theorem 1, CC\(u + C)

= z + C.

Corollary. Let a cone C be the closure of the convex set determined by

a set of rays {ra} starting from 8 and assume that these rays have the

following properties, (a) the linear space spanned by \ra) is dense in X,

(b) if rattE{ra) there exists a second ray r'aoE{ra) such that the re-

mainder of the rays in {ra} generates a linear space whose closure is a

hyperplane Ha„ which separates ra and rl and such that the two dimen-

sional subspace determined by rao and r'a0 intersects Ciia = HaC\ C. Then

if u is any point in the two space determined by any ra<> and r'ao, there

exists a zEX such that Cf\(u+C) =z+C.

Example. Let / be the space of all real summable sequences. Let

zt be the point (0, 0, ■ • ■ , 0, 1, 0, • • • ), i=l, 2, 3, • • • and z~

= (0,0, • • • , 0, —1,0, • • • ), i= 1, 2, • • • with 0 everywhere except

in the ith. place. These points are then extreme points of the unit

sphere in I. Let Ct be the cone with vertex zf which is generated by

the unit sphere. This is easily seen to be convex and closed in the

norm topology. Then Ct satisfies the conditions of the preceding

corollary since evidently if rf, rj are the rays from zf through zf,

zf respectively and Hj is the closed subspace determined by the rest

of the rf, Hj is a hyperplane and rf, rj satisfy the conditions set

forth there. Similarly for Ct for each i. Thus the unit sphere in I is

equal to C.+PiCr for any t=l, 2, • • ■ where the Ct, C~ satisfy the
conditions of the preceding corollary.
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