A REMARK CONCERNING A THEOREM OF B. FRIEDMAN

J. FELDMAN

In [1], the following theorem is stated: let T be a densely defined linear operator with closed range in the Hilbert space \mathcal{K} , with a densely defined adjoint T^* also having closed range. Let ϕ , ψ be vectors in \mathcal{K} , and let $\phi \otimes \psi$ be the operator defined by $\phi \otimes \psi(x) = (x, \phi)\psi$. Then $T + \phi \otimes \psi$ also has closed range.

Of course, the fact that T^* is densely defined implies that T is pre-closed; but an examination of the proof shows that it actually requires that T be a *closed* operator. Under this assumption, a simpler proof can be given; and the need for some such condition will be shown by example.

THEOREM. Let T be a closed, densely defined operator with closed range. Then $S = T + \phi \otimes \psi$ also has a closed range.

PROOF. The nullspace \mathfrak{N}_T of a closed operator T is closed, and its domain \mathfrak{D}_T is the sum of the two subspaces \mathfrak{N}_T and $\mathfrak{D}_T \cap \mathfrak{N}_T^{\perp} = \mathbb{S}_T$, since x in \mathfrak{D}_T can be written $(x - P\mathfrak{N}_T x) + P\mathfrak{N}_T x$ (where $P\mathfrak{M}$ denotes the orthogonal projection on the subspace \mathfrak{M}). If we use the graph norm on \mathfrak{D}_T , given by the inner product $\langle x, y \rangle = (x, y) + (Tx, Ty)$, then \mathfrak{N}_T and \mathbb{S}_T are complete, and \mathbb{D}_T is their Hilbert space direct sum.

T restricted to \mathbb{S}_T is a 1-1 continuous operator from \mathbb{S}_T (in the graph norm) to the range \mathbb{R}_T of T. The closed graph theorem tells us that its inverse R is continuous, as an operator from the Hilbert space \mathbb{R}_T to \mathbb{S}_T . Now, the orthogonal complement $[\phi]^\perp$ of ϕ in \mathbb{K} is closed in \mathbb{K} . Thus its intersection with \mathbb{S}_T is closed in the graph norm. Then $R^{-1}([\phi]^\perp \cap \mathbb{S}_T) = T([\phi]^\perp \cap \mathbb{S}_T)$ is closed in \mathbb{K} . $T([\phi]^\perp \cap \mathbb{S}_T) = S([\phi]^\perp \cap \mathbb{S}_T)$ $\subset \mathbb{R}_S \subset \mathbb{R}_T + [\psi] = T(\mathbb{S}_T) + [\psi]$. Now, the codimension of $T([\phi]^\perp \cap \mathbb{S}_T)$ in $T(\mathbb{S}_T) + [\psi]$ is at most two, so that of $T([\phi]^\perp \cap \mathbb{S}_T)$ in \mathbb{R}_s is again at most two. Since $T([\phi]^\perp \cap \mathbb{S}_T)$ is closed, \mathbb{R}_s is also closed.

REMARK 1. If T had been merely preclosed, but with closed range, then it is easy to see $\Re_{\overline{T}} = \Re_T$, so that $\overline{S} = \overline{T} + \phi \otimes \psi$ has closed range.

REMARK 2. Here is an example of an operator T which is densely defined, bounded, and has closed range, and whose adjoint T^* is therefore bounded and has closed range, but for which $S = T + \phi \otimes \psi$ will not have closed range, for certain ϕ and ψ .

Let \mathcal{K}_0 be a proper infinite-dimensional subspace of \mathcal{K} , and

Received by the editors December 23, 1957.

 ψ , ψ_1 , ψ_2 , ψ_3 , \cdots an orthonormal basis for \mathfrak{X}_0 . Let ψ_n' = $n^{-1/2}((n-1)^{1/2}\psi+\psi_n)$. Then the set $\Psi=\{\psi,\ \psi_1',\ \psi_2',\ \cdots\}$ is linearly independent, and $\|\psi_n'-\psi\|^2\to 0$. Enlarge Ψ to a maximal linearly independent set Φ in \mathfrak{X}_0 . Thus, the linear combinations of elements of Φ span \mathfrak{X}_0 . Let \mathfrak{X}_0 be the set of all linear combinations of elements of $\Phi-\{\psi\}$. Then \mathfrak{X}_0 has the following properties:

- (1) \mathcal{K}_0 is dense in \mathcal{K}_0 .
- (2) $\psi \oplus \mathfrak{K}_0$.
- (3) $\mathcal{K}_0 + [\psi] = \mathcal{K}_0$.

Let ϕ be any unit vector in \mathfrak{X}_0^{\perp} . Let T be the restriction of $P\mathfrak{J}_{0} - \phi \otimes \psi$ to $\mathfrak{X}_0 + \mathfrak{X}_0^{\perp}$. Then clearly $\mathfrak{R}_T \subset \mathfrak{X}_0$. Further, $T \mid \mathfrak{X}_0 = P\mathfrak{J}_{0} \mid \mathfrak{X}_0$, so $\mathfrak{X}_0 \subset \mathfrak{R}_T$. Finally, $T\phi = -\psi$, so $\mathfrak{R}_T = \mathfrak{X}_0$. Notice also that $T^* = P\mathfrak{J}_{0} - \psi \otimes \phi$, and so if $x = x_1 + x_2 + \alpha \psi$, where $x_1 \in \mathfrak{X}_0 \cap [\psi]^{\perp}$, $x_2 \in \mathfrak{X}_0^{\perp}$, then $T^*x = x_1 + \alpha(\psi - \phi)$. Thus $\mathfrak{R}_T^* = (\mathfrak{X}_0 \cap [\psi]^{\perp}) + [\psi - \phi]$, clearly closed. However, $T + \phi \otimes \psi = P\mathfrak{J}_{0} \mid \mathfrak{X}_0$ has \mathfrak{X}_0 as its range.

REFERENCE

1. B. Friedman, Operations with a closed range, Comm. Pure Appl. Math. VIII, vol. 4 (1955) p. 539.

University of California at Berkeley