
ON THE HILBERT MATRIX, II1

MARVIN ROSENBLUM

1. The Hilbert Matrix isiIA=((w+?w-|-l-)fe)-1),w,w = 0,1,2,

where k is a real number that is not a positive integer. It is known

[2; 3; 7] that if x0, xx, x2, • • • , is a sequence of complex numbers,2

then

00 00

0 ^   ^  (n + m+ 1 — k^XnXm g Mk Yl \ xn\2
n,m=0 n=0

where the best possible constant Mk is it for k ^ 1/2 and ir\ csc irk\ for

1/2 <k. Thus, when considered as a linear operator on the complex

sequential Hilbert space l2, Hk is a bounded symmetric operator.

Magnus [8] showed that the l2 spectrum of H0 is purely continuous

and consists of the interval [0, it]. In this note we shall exhibit for

each real k a monotone function pk(\) and an isometric map Vk of Z2

onto L2(dpk) such that VkHkVkl is a multiplication operator. This

will allow us to determine the spectral nature of IIk.

In [9] we studied an isomorphism of I2 with L2(0, 00) that trans-

forms the Hilbert operator Hk into an integral operator which we

shall now denote by 3C*,i/2- It can be easily checked that SCk,i/2

formally commutes with the differential operator Lk which is defined

below. Indeed, we shall prove that 3Ck,i/2 = w sech irLk . Since Lk

can be diagonalized by a now standard procedure so Xi,i/2 and hence

Hk can be diagonalized.

2. We first shall apply the Titchmarsh-Kodaira theory of singular

differential operators [ll; 4], to the operator Lk, where (Lky)(x)

= — (x2y'(x))' —(&x—x2/4-f-l/4)y(x), x^O, k real. Suppose that X is

a complex number with positive imaginary part and u = i\1'2,

ir<arg u<3w/2. Lky = Xy has the linearly independent solutions

ak(x,\) = Wk,u(x)x~1 and ft(x, X) = [T(l - 2w)]~T(l/2 - k - u)

■Mk,^u(x)x~1, where W and M are Whittaker functions [l, Chapter

6]. Considered as functions of x, akEL2(\, »), akEL2(0, 1),

PkEL2(0, 1), pkEL2(l, 00), and the Wronskian of ak and & is 1.

Thus Lk is of the limit point type at 0 and 00 and has the Green's
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function Gk(t, s, X) = Gk(s, t, X) =ak(t, ~\)Pk(s, X) if t^s.

If X>0, then Wtu(x) = Wk,^(x) = Wk,u(x) and pk(x, \)-pt(x, X)

= iw~1 sinh (2ttX1'2) | T(l/2-k-u) \ 2ak(x, X). Thus if t^s it follows

that

Im Gk(l, s, X) = - 2-H[pk(s, X) - p*k(s, \)]ak(t, X)

= (2X)-1 sinh (27TX1'2) | r(l/2 - k - u) \2ak(s, \)ak(t, X).

For fixed s and t, Gk is meromorphic in Re X<0, and the poles

of Gk in the X plane are determined by the poles of T(l/2—k — u)

Thus if &<l/2, then Gk has no poles. Suppose & Si 1/2. We put

\n,k=-(k-l/2-n)2, w = 0, 1, 2, • • • , Nk, where Nk^k-l/2. The

residue of T(l/2-k-u) at X„,* is (-l)n(n\)~1(2n + l-2k), so the

residue of Gk at X„,j; for / ^ s is

(-l)"(2w + 1 - 2k)
-Pk(s, \n.k)-ak(t, \„,k)

n\Y(2n ~[2k)

2n+l-2k
=      ,t,/„,-r«*(J> ^n.k)ak(t,\n,k).

n\V(2k - n)

Hence, by [ll; 4] we have established

Theorem 1. Suppose — oo <&< oo. Let p*(X) be the monotone in-

creasing function = (I/2w2)Jo sinh (27rg1/2) | r(l/2-/fe-^1/2)|2rf£ if

XS:0, =0 i/X<0, £<l/2, and= ^x<x„it (2« + l -2£)/raT(2£-«) if
X<0, Jfe^l/2. By L2(dpk) we mean the Hilbert space with norm given

by\\g\\ = U-«\£W\idpk(\)]112.
Let Uk be the operator on L2(0, oo) to L2(dpk) defined by (Ukf)(\)

= l.i.m.«,0+/>*(*, X)/(x)rfx,/eL2(0, oo), -«><X<«>. Then

(i) Uk is an isometric transformation that maps L2(0, oo) onto

L2(dPk), so iffEL2(0, w) andj= Ukffyhen

f°\f(x)\2dx =  C \ g(\)YdPk(\)
J 0 ^ -00

1 /•" 1/1 \2
= — t 2 I     I *(X) I2 sinh (27TX1'2)   r (-k- i\112)   dK

2 J o \ 2 /

*»  . .   2* - 2» - 1
+ E U(W)I2—7X7-:■

„=o n\T(2k - n)

(ii) For any gEL2(dpk), (Ut]1g)(x)=f2„ak(x,\)g('k)dpk('K), where

the integral is understood to converge in L2(dpk) norm.
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(iii) If\g(\)EL2(dpk), then (UkLkUi1g)(\)=\g(\) except for a set

of dpk measure 0.

3. Thus the isometric map Uk diagonalizes Lk. Next we consider

a class of integral operators on L2(0, oo) that are bounded functions

of Lk.

Theorem 2. Suppose Re 7>0 and 1/2—£+7=^0, —1, —2, • • • .

Let 3Cfc,7 be the operator on L2(0, <*>) to L2(0, «>) defined by

(xt)y-"2(x + tyy-uw^x + t)f(t)dt.
0

Then 5Q.kiy is a bounded normal operator such that

(u&k,yUir1g)(k\) = r(7 + ;xI/2)r(7 - i\1!2)g(\)

except for a set of dpk measure 0.

Proof. Hari Shanker [10] showed that if Re (7±w)>0, 1/2—*

+ 7 ^ 0, - 1, - 2, • • • , then T(y + u)T(y - u)Wk,u(x)x~1

= T(l/2+y-k)fZ(xt)->-li2(x + t)-y-l'2Wk.y(x+t)Wk,u(t)t-1dt. If k

>l/2, Re 7>0, un = iX/l n = 0, 1, • • • , Nk, Nk<k-l/2, then
Wk^tyi-t^EL^, <»), so in this case the condition Re (7 + w)>0

may be replaced by the restriction Re y > 0. Thus if g(X) is continuous

with compact support the Fubini theorem assures us that

(Xt.yUir1g)(x) = r(7 - ;x"2)r(7 - i\l'2)(Uirig)(x).

By operating on the left with Uk we obtain

(*) (UkKk„U^g)(\) = r(7 + i\V2)T(y - tkU*)g(\).

Since r(7+iX1/2)r(7—tX1/2) is a.e. bounded with respect to dpk

measure, 3Ck,y is a bounded operator. Finally, (*) holds for all g in a

dense subset of L2(dpk) and hence for all gEL2(dpk).

By specializing to ^ = 0 we obtain a result of Lebedev [5; 6].

Corollary 3 (Lebedev).

/i 00

KiKv*(x/2)x-V2f(x)dx

provides an isometric map of L2(0, oo) onto the Hilbert space with norm

given by \\g\\ = [fo\g(x)\2 sinh (7rX1/2)iX]1/2, with3

K»}i>(x)x-u2g(k) sinh(w\v2)d\.
o

J Ku is the modified Bessel function of the third kind.
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Let (3Coaitf)(x)=fZe-(x+»"2(x+y)-y(y)dy. Then (<70X0,i/2 C/0_1g)(X)

= tt sech (7rX1/2)g(X) =tt sech (wL^g^).

Proof. Use W0,u(x) = ir-^2x^2Ku(x/2), IF0,i/2(x) = e~x'2 and

r(l/2-iX1'2)r(l/2+iXl'2)=7rsech (ttX1'2).

Theorem 4. Let <pn(x)=e~xl2Ln(x), n = 0, 1, 2, • • • , where Ln is

the nth Laguerre function. Define the operator Vk on I2 by specifying

that whenever a = {a„}0°°El2, then (Vka)(\) = Uk(^n~Qdn<Pn). It follows

that:

(i) Vk is an isometric map of I2 onto L2(dpk) whose inverse V^1 is

given by V^g = a = {a„}, where

(Vir1g)(x)4>n(x)dx,        n = 0, 1, 2, • • • .
o

(ii) If gEL2(dpk), and k is not a positive integer, then (VkHkVt~1g)(\)

= (UkSCk,i/tUk1g)(\)=ir sech(7rXl/2)g(X) except for a set of dpk

measure zero.

Proof, (i) is true since Uk is isometric and the <pn form a complete

orthonormal set in i2(0, oo). (ii) is a consequence of the relation

Jo(3Ck,i/2cp„)(x)<bm(x)dx= (n+m + l — k)~x, n, w = 0, 1, 2, • • • , proved

in [9] for k<l and easily seen valid for all k^l, 2, 3, ■ ■ • by an

analytic continuation argument.

Thus the Hilbert matrix Hk has the same spectrum as the mul-

tiplication operator -k sech (7rX1/2) on L2(dpk), and we have our

Theorem 5.

(i) For all real /%;=1, 2, • • ■ , Hk has continuous spectra of multiplic-

ity one on [0, it];

(ii) If k^ 1/2, Hk has no point spectrum;

(iii) If k>l/2, let p and q be the largest non-negative integers such

that 2p<k — l/2 and 2q<k — 3/2 respectively. Then tr csc irk and

— 7T csc irk are eigenvalues of Hk of multiplicities p + l and q + 1 re-

spectively. Hk has no other point spectrum.

Proof. The closure of the range of ir sech (7rX1/2), Of£X<oo is

[0, tt] so (i) is proved, (iii) follows from an examination of

Trsech (7rX1/2),X1'2 = i(/fe-l/2-w), » = 0, I, ■ ■ ■ , Nk, Nk<k-l/2.

The eigenvalues and corresponding eigenvectors in (iii) were ex-

hibited by Hill [2]. Theorem 5 provides a complete determination

of the spectrum of Hk and thus solves a problem posed by Magnus

in [7].
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