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We suppose {xi}, i= 1, 2, • • • to be a chain with a finite number of

states, 0, 1, • • • , M—\, and consider the random variable X

— £«" i XiM~' and its associated distribution function F(x)

= Prob \X<x). We write E(.4) = Prob {XEA } =fAdF(x). F(A) is
a completely additive probability measure on the Borel field of sets

in [0, l] generated by sets of the form {F(x) <a}. Harris [l] has

shown that under very general conditions on the stationarity of the

chain that F(x) is a purely singular function and that <p(t)t~o-+*0

where cp(t) is the Fourier-Stieltjes transform <f>(t) =feitxdF(x). Wiener

and Wintner [2] used the connection between the Lipschitz condition

satisfied by F(x) and the behavior of <f>(t) to show that there are purely

singular functions F(x) for which <p(t)t~«, = 0(t~a) for all a<l/2.

Salem [3] showed the connection between the Hausdorff measure

of the set E on which F(A) is concentrated and the behavior of <p(t)

for large t. Although in our case <p(t)t«.«,-+*0, the Lipschitz condition

and the Hausdorff dimension of E still play a role. Namely, when the

Xi form a stationary Markov chain, with a single ergodic class, they

are the entropy, in the sense of Shannon [4], of the sequence {x<}

considered as the sequence of states of a symbol-generating source.

The dimensional number /3(E) of a set EC[0, l] is defined as

follows: If /x^maxj | If\, where {/,} is a set of intervals, and ECU/,-,

we say Cp- = (ili is a covering of E of norm p.. We let

T(y,Cp,E) = £ |/,|t.

The 7-dimensional Hausdorff measure of E is

r(7, E) = lim g.l.b.r(T, Cp, E)
M-K)

where the greatest lower bound is taken over all coverings of norm p..

/3(E) is the number such that, for all e>0,

r[/3(E) -e, E] = oo,        r[p(E) + e, E] = 0.

We suppose then the {x{} i=l, 2, • • • , to be a Markov chain,
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with stationary transition probabilities with matrix ||a<,-[|, a single

ergodic class, initial probabilities Af_1, and stationary probabilities &,.

We let a = — 2^,,,- ft.-ofj- logM 0.7,  a  number  proportional  to  the

entropy in the sense of Shannon [4].

Theorem 1. There is a set EE [0, l] such that

(1) F(£) = l,

(2) p(E)=a,

(3) xEE, e>0 imply

(a) lim F(x — h, x + h)h~a+( —> 0,
ft->0

(b) lim F(x — A, x + h)h~a~l —» 00.
ft->0

We let 7(», &) = [feM-», (ife + l)^-"], /(», x) he that /(», &) which
contains x. If & = ^Zj-o1 kn-iMi is the expansion of k in the base M,

F[l(n, x)] = M~lY\$=2 o-hi-uki- By the ergodic properties of the chain,

the number of times (ki-i, ki) = (j, k) is bjajk[n + 0(I)] [4]. Hence

(1) F[l(n, x)] = II a\l+°W«"> = M-["+°'1»a

except for a set of zero measure, which we delete to form E*, F(E*)

= 1. On £*, (3.b) is satisfied.

Although (1) immediately implies (3b), its lack of symmetry does

not allow us to conclude that (3a) holds for all points of E*. We elim-

inate the points affected by this lack of symmetry to form a set

EEE* lor which (3a) holds and F(E) = l. We proceed as follows:

We let C(e) be those x for which

(2) F[l(n, x)} S;   I I(n, x) \a~'

lor an infinite number of n. Since C(e)EcE*, F[C(e)] =0. We choose

the covering C„(e) of C(e) by assigning to each xEC(e) that interval

I(m, x) lor which (2) holds for the smallest m>n. Thus, the interval

assigned to x in the nth covering includes the interval assigned to x

in any higher covering. Hence, Cn(t)Z)Cn+8(e) in the sense of set in-

clusion. Also, Cn(e) I C(e). From the complete additivity of F(A),

lim„^„ F[Cn(e)] =0. For each Cn(e) we construct a Cn(r, e) and

Cn(l, e) as follows: If I(s, k)EC„(e) we assign I(s, k + l) to Cn(r, e),

I(s, k-l) to Cn(l, e). We let Dn(e) = C„(e)WC„(r, e)VJC„(/, e). If

I(s, k + l)ECn(r, e) and I(s, k + l)EcCn(e), (2) does not hold and

hence F[l(s, k + l)] < \ I(n, k + l)\ —• = \l(n, k)\"~'^ F[l(s, k)].

Hence,

F[Cn(r, e)] = F[Cn(r, e) f\ C„(e)] + F[Cn(r, e) H cCn(e)] g 2F[C.(e)].
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Similarly, F[Cn(l, t)] =g lF[Cn(e)]. So F[Dn(e)] g F[Cn(e)]

+ F[Cn(r, e)]+F[Cn(l, ()]^5F[Cn(e)]. We note that Dn(e)>Dn+,(e)

and letD(e) =\imn^Dn(e). F[D(e)] g5 lim F[Cn(e)] =0. We obtain E

by deleting from E* all points belonging to D(en) for a sequence

e„ i 0. Having eliminated only a countable number of null sets, we

still have F[E) = 1. However, for xEE, for any e, we can choose m

and £ so large that if xEI(m,j), F[l(m, j+i)]<M-mia~''> for z'= -1,

0, 1. Hence, for h<M~n, F(x — h, x+h) <3M~nl-a-l) from which we

may deduce (3a).

We cover E by a set Cn= {ij} of norm M~n, by assigning for each

x the I(m, x) for which F[l(m, x)]>\l(m, x)\a+e for the smallest

m^n. The /,- are disjoint, since none is included in another and they

cannot overlap. Since E C Uy/;, 1 ^ E^Vj) > El^la+e- Hence

r(a+e, E)gl for all e>0, so /3(E) gee.

By choosing &0 sufficiently small, we can, for any fixed e, find a

subset A(h0) of E such that F[A(h0)]>0.5, and, for xG^W,

Z*:;/z0 we have F(x — h, x+h) <(2h)a~*. We choose any covering

Ca0 = U/j. To each Ii we choose a point XiEA(h0) and take Ii to be

the smallest interval containing It symmetric about x». We note that

|//| <2|J«|. We then have

E (21 Ii\ )— £ E 1If |— > E F(/J) ^ F[A(h0)] > 0.5.

So, for «>0, T[a — e, Ch0, A(h0)]>0.5. Since Ch0 was an arbitrary

covering of A(h0) of norm ho, T[a — e, A(h0)]>0.5. Hence P[A(h0)]

s^a. Since EZ)A(h0), j3(E)Sza. Hence (2) holds. This establishes our
theorem.

An example: H. G. Eggleston [5] has shown that the set

S = \x  lim* E Xi/n g a g (M - 1)/2V has /?(£) = a,

where Ma= [kr0-]'1, k = (l—r)/(l —rM), for r the positive real root of

E^o1 (*-o)r' = 0. He proves this by showing a^P(S*)^P(S*)^a,

where 51*, 5* are obtained by replacing the limit in the definition of

5 by limit inferior and limit superior and using rather sophisticated

methods to obtain his coverings.

We give a proof using the point of view of information theory. We

let Xj = i, Prob pi, i = 0, ■ ■ • , M—l, independently of j, subject to

the restrictions £(xy) = E^<=a. Ep*= 1- We vary the probabilities

pi so as to maximize the entropy H(X) = — E^f log^ Pi, of the se-

quence \Xi) considered as a source, subject to the given side condi-

tions. We find the maximum to be given by kr\ Our restrictions

imply   ^E"o1»"'=l.   *EiV «•< = <*•   This   yields   k=[Y%~1 r']"1
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= l-r/\-rM. Y,t~oX (*-a)r« = 0. We have also

A*-l

H(X) = — £ *»"' logM *>"'=—£ *»"' logAf A — 5Z kifi loS^ r
0

= — logAf k — a logAf r = — logAf ^r3,

so H(X)=a. However, our measure F(A) imposed on the interval

[0, l] by this assignment of probabilities, applied to intervals I(n, x)

corresponding to the partial sums of x, gives

F[l(n, x)] = knrZ"'-lZi

so the set S0 which corresponds to the set E of Theorem 1 is

So =  \x   lim  2Z Xi/n = a> , and, by Theorem 1, P(So) = a.

We note that, in terms of F(A), S* is the set

S* = {x|F[/(«, x)]

= knr       Si M~na =   | I(n, x) \a for infinitely many n\.

We construct the covering Cn of S* of norm M~N by assigning to each

xES* that interval I(m, x) for which, for the smallest m>N,

F[l(m, x)]'^M~ma=\l(m, x)\<". The I(m, x) are disjoint, so

1 ^ F(CN) = £ F[7(f», x)] > E! /(»», x) |° = r(«, Ch, S*).

Hence, T(a, S*)gl, so j8(5*)ga. Since S*DSZ)S0, a^P(S*)

^P(S) ^p(S0)=a. So p(S) =a.
We suppose ourselves restricted to sending two-state [0, l] pulses

in the transmission of messages. We can then take symbols

[yi, i= 1, • • • , p.} to be binary numbers of lengths respectively ti.

A message will be a sequence of the y,'s. Zj, the jth symbol, will be

a function whose range are the y's. An infinite message will be made

to correspond to a point y in [0, 1 ] by the dyadic expansion

F = £ Zk2-X'^\

The set of such points we will call the message set, Q. We assume

restrictions on the choice of the y, to have been made so that two

different messages cannot correspond to the same point. This will

imply that different finite messages of the same length will cor-

respond to disjoint dyadic intervals of the line.
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Each finite message of length n will correspond to an interval in

[0, l] from the nth dyadic net. We suppose tj = M to be the length

of the longest symbol. We let N(t) be the number of finite messages

of length t. It is clear that we can cover the message set Q by N(t)

intervals of length 2-', N(t + 1) intervals of length 2-((+1),

N(t + M) intervals of length 2~{l+M). These may, of course, involve

overlapping; however, we have an approximation

Af

r[Y, C(2-<), Ql< £ N(t + ;)2-«+<>*
0

to the Hausdorff 7-dimensional measure of the set Q. We let k(j)

he the number of symbols of length j. As Shannon shows [l], N(t)

satisfies the difference equation

N(t) = Z HJ)N(t - j)
1

so that N(t) is asymptotically approximated by k\f where X is the

largest root of

Af

(3) X< = £ k(j)\-\
1

Hence,

T[7, C(2-'), Q] g XX'2-t'

for large /. For 7>log2 X,

T[y,C(2-<),Q]-*0;

so/3(0glog2X.

We propose to send yy independently of what has been sent before

with probability pj=\~'>. By [3], 22p,-=l. On each of our intervals

of length 2~( corresponding to messages of length exactly t, the in-

crease of F(x), the distribution imposed on [0, l] by our mapping,

and by our choice of message distribution will be X-'. Hence, on Q,

our function F(x) satisfies a Lipschitz condition Lip log2 X, and no

weaker Lipschitz condition. Since Q consists of the points of increase

of F(x), Q is closed. Hence we may cite the theorem of J. Gillis [6],

to the effect that if F(x) continuous and monotone takes its increase

on a closed set E, satisfies a Lipschitz condition of no smaller order

than Lip 8, then the Hausdorff 5-dimensional measure of E is positive.

Hence /3((?) ̂ log2X.
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Thus, if we let C denote the capacity of a channel in the sense of

Shannon, we have, for the case described above.

Theorem 2. (3(Q) = C.
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