SINGULAR FUNCTIONS ASSOCIATED WITH
MARKOV CHAINS!

JOHN R. KINNEY?

We suppose {x,} ,1=1,2, - - - to bea chain with a finite number of
states, 0, 1, -, M—1, and consider the random variable X
= > 2, %M~ and its associated distribution function F(x)
=Prob { X <x}. We write F(4)=Prob {X€A} =[4dF(x). F(4) is
a completely additive probability measure on the Borel field of sets
in [0, 1] generated by sets of the form {F(x)<a}. Harris [1] has
shown that under very general conditions on the stationarity of the
chain that F(x) is a purely singular function and that ¢(t),..+0
where ¢(¢) is the Fourier-Stieltjes transform ¢(¢) = fei**d F(x). Wiener
and Wintner [2] used the connection between the Lipschitz condition
satisfied by F(x) and the behavior of ¢(¢) to show that there are purely
singular functions F(x) for which ¢(£);., =0(t"2) for all a<1/2.

Salem [3] showed the connection between the Hausdorff measure
of the set E on which F(A4) is concentrated and the behavior of ¢ ()
for large ¢. Although in our case ¢(¢):.,+0, the Lipschitz condition
and the Hausdorff dimension of E still play a role. Namely, when the
x; form a stationary Markov chain, with a single ergodic class, they
are the entropy, in the sense of Shannon [4], of the sequence {:}
considered as the sequence of states of a symbol-generating source.

The dimensional number B(E) of a set EC[0, 1] is defined as
follows: If u>max; | I,|, where {I;} is a set of intervals, and ECUI,
we say Cu=UI; is a covering of E of norm u. We let

F(‘Y) Cl‘: E) = Z | I,’I’Y.
The vy-dimensional Hausdorff measure of E is
I'(y, E) = lim g.1.b.I'(y, Cu, E)
B0
where the greatest lower bound is taken over all coverings of norm p.
B(E) is the number such that, for all €>0,
T[B(E) — ¢ E] = o, T[B(E) +¢ E] = 0.
We suppose then the {x,} 1=1, 2, ..., to be a Markov chain,
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with stationary transition probabilities with matrix ||as|, a single
ergodic class, initial probabilities M~!, and stationary probabilities b;.

We let a=— 2, ; biaijlogsy aij, a number proportional to the
entropy in the sense of Shannon [4].

THEOREM 1. There is a set EC [0, 1] such that

(1) F(E)=1,
(2) B(E)=q,
3) xEE, >0 imply
(a) lim F(x — k, x + h)hote— 0,
h—0
(b) lim F(x — hyx + h)h ¢ — .
A=0

We let I(n, k) = [kM~", (k++1)M~"], I(n, x) be that I(n, k) which
contains x. If =Y "=} k._,Mi is the expansion of k in the base 1,
F[I(n, x)]=M-]];.2 ar;_+.. By the ergodic properties of the chain,
the number of times (ki_y, k) = (j, k) is bjai[n+0(I)] [4]. Hence

1) FlI(n, 2)] = 1 alrtOW ey = Jf~lnt0Dla

17
except for a set of zero measure, which we delete to form E*, F(E*)
=1. On E*, (3.b) is satisfied.

Although (1) immediately implies (3b), its lack of symmetry does
not allow us to conclude that (3a) holds for all points of E*. We elim-
inate the points affected by this lack of symmetry to form a set
ECE* for which (3a) holds and F(E)=1. We proceed as follows:
We let C(€) be those x for which

2 FlIn, )] = | I(n, x) |~

for an infinite number of #. Since C(e) CcE*, F[C(e)]=0. We choose
the covering C.(€) of C(€) by assigning to each x& C(e) that interval
I(m, x) for which (2) holds for the smallest m >n. Thus, the interval
assigned to x in the nth covering includes the interval assigned to x
in any higher covering. Hence, C.(€)D Cnis(€) in the sense of set in-
clusion. Also, C.(¢) | C(¢). From the complete additivity of F(4),
limy., F[Ca(€)]=0. For each C.(e) we construct a C.(r, €¢) and
C.(l, € as follows: If I(s, k) E Ca(€) we assign I(s, k+1) to Cu(r, ¢€),
I(s, k—1) to C.(l, €). We let D.(e) =Ca(e)\UCu(r, €\JC.(l, €). If
I(s, k+1)EC.(r, €) and I(s, k+1)CcCu(e), (2) does not hold and
hence F[I(s, k+1)] < |I(n, k4+1)|e< = |I(n, k)|==<< F[I(s, B)].
Hence,

F[Cu(r, €] = F[Cu(r, & N Cale)] + F[Culr, & N cCu(e)] < 2F[Cale)].
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Similarly, F[C.(, €] = 2F[C.(e)]. So F[D.(e)] < F[Cu(e)]
+F[Cu(r, € ]+ F[Ca(l, € ] S5F[Ca(€)]. We note that D,(€) > Dn,(€)
and let D(e) =lim,., D.(€¢). F[D(€) ] £51lim F[C,(¢)]=0. We obtain E
by deleting from E* all points belonging to D(e,) for a sequence
€, 1 0. Having eliminated only a countable number of null sets, we
still have F[E]=1. However, for x&E, for any ¢, we can choose
and & so large that if x&€1(m, j), F[I(m, j+i)] < M—m@9 for 1= —1,
0, 1. Hence, for A<M, F(x—h, x+h) <3M—=9 from which we
may deduce (3a).

We cover E by a set C,={I,} of norm M—=, by assigning for each
x the I(m, x) for which F[I(m, x)]>’](m, x)]"‘+‘ for the smallest
mZn. The I; are disjoint, since none is included in another and they
cannot overlap. Since E C U; I;, 1 = > F(I,) > ».|I;|«*. Hence
I'(a+e€, E)=1 for all €>0, so B(E) Za.

By choosing &, sufficiently small, we can, for any fixed ¢, find a
subset A (ko) of E such that F[A(ho)]>0.5, and, for xEA(k),
h=h, we have F(x—h, x+h)<(2h)e=«. We choose any covering
Ci,=UI;. To each I; we choose a point x;&A (k) and take I to be
the smallest interval containing I; symmetric about x;. We note that
| 17| <2|I.|. We then have

2 @)z X | 1> X FUI!) =z F[A(h)] > 0.

So, for €>0, I'[a—e¢, Ch, A(ho)]>0.5. Since Ch, was an arbitrary
covering of A (ko) of norm ho, I'[a—e¢, A(ho)]>0.5. Hence B[A (k)]
2 a. Since EDA (o), B(E) Za. Hence (2) holds. This establishes our
theorem.

An example: H. G. Eggleston [5] has shown that the set

S={x

where M= [kre]-1, k= (1—7r)/(1—rM), for r the positive real root of

3! (i—a)ri=0. He proves this by showing a=fB(S*) 2B(Sk) 2,
where S*, Sy are obtained by replacing the limit in the definition of
S by limit inferior and limit superior and using rather sophisticated
methods to obtain his coverings.

We give a proof using the point of view of information theory. We
let x;=1, Prob p,, =0, - - -, M—1, independently of j, subject to
the restrictions E(x;) = D _ip:=a, Ep,: 1. We vary the probabilities
pi s0 as to maximize the entropy H(X)= — >_p; logs ps, of the se-
quence {x.} considered as a source, subject to the given side condi-
tions. We find the maximum to be given by kri. Our restrictions
imply kD Mi'ri=1, kX ¥ 'iri=a. This yields k= [D M-t 4i]—

lim® i x/n<a < (M— 1)/2} has B(S) = a,

n—o i
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=1—r/1—rM 3 M1 (j—a)ri=0. We have also

M-—1
H(X) = — D krilogy kri= — D krilogy k — D kirilogsy
0
= — logu k — alogy r = — loguy kre,

so H(X)=a. However, our measure F(4) imposed on the interval
[0, 1] by this assignment of probabilities, applied to intervals (%, x)
corresponding to the partial sums of x, gives

FlI(n, 0)] = k™™
so the set Sy which corresponds to the set E of Theorem 1 is

So= {x

We note that, in terms of F(4), S* is the set
S* = {x| F[I(n, %)]

=k 2 M= | I(n, %) |* for infinitely many n}.

n

lim Y x/n = a} , and, by Theorem 1, 8(So) = a.

n—w ]

We construct the covering Cy of S* of norm M—¥ by assigning to each
xE€S* that interval I(m, x) for which, for the smallest m> N,
F[I(m, x)]= M-ma=|I(m, x)|=. The I(m, x) are disjoint, so

12 F(Cy) = X FlI(m, 2)] > 2| I(m, %) |* = T(«, Cx, $*).

Hence, TI'(e, S*)=1, so B(S*)<a. Since S*DSDS, a=p(S*)
2 B(S) 2B(Ss) =a. So B(S) =a..

We suppose ourselves restricted to sending two-state [0, 1] pulses
in the transmission of messages. We can then take symbols
{y,-, =1, - -, ;t} to be binary numbers of lengths respectively ¢;.
A message will be a sequence of the y's. Z;, the jth symbol, will be
a function whose range are the y’s. An infinite message will be made
to correspond to a point y in [0, 1] by the dyadic expansion

v = 3z, 5",

The set of such points we will call the message set, Q. We assume
restrictions on the choice of the y; to have been made so that two
different messages cannot correspond to the same point. This will
imply that different finite messages of the same length will cor-
respond to disjoint dyadic intervals of the line.
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Each finite message of length # will correspond to an interval in
[0, 1] from the nth dyadic net. We suppose ¢;= M to be the length
of the longest symbol. We let N(¢) be the number of finite messages
of length ¢. It is clear that we can cover the message set Q by N(¢)
intervals of length 2% N(¢41) intervals of length 2—(t+D ...
N(t+ M) intervals of length 2—¢+¥ These may, of course, involve
overlapping; however, we have an approximation

T'ly,C(2™%,0'= i N(t 4 §)2- @+

to the Hausdorff y-dimensional measure of the set Q. We let k(j)
be the number of symbols of length j. As Shannon shows [1], N(¢)
satisfies the difference equation

N(@) = 2 k(N — )

so that N(t) is asymptotically approximated by kNt where \ is the
largest root of

M
3) o= 2 k(N

Hence,
Ty, (279, Q] = Kat2-
for large t. For v >log; A,
P[’Y: C(z_t); Q] g O;
t— oo

so B(Q) =log: \.

We propose to send y; independently of what has been sent before
with probability p;=A~%. By [3], D_p;=1. On each of our intervals
of length 2~ corresponding to messages of length exactly ¢, the in-
crease of F(x), the distribution imposed on [0, 1] by our mapping,
and by our choice of message distribution will be A=t. Hence, on Q,
our function F(x) satisfies a Lipschitz condition Lip logs N, and no
weaker Lipschitz condition. Since Q consists of the points of increase
of F(x), Q is closed. Hence we may cite the theorem of J. Gillis [6],
to the effect that if F(x) continuous and monotone takes its increase
on a closed set E, satisfies a Lipschitz condition of no smaller order
than Lip 8, then the Hausdorff §-dimensional measure of E is positive.
Hence B(Q) 2 log: A.
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Thus, if we let C denote the capacity of a channel in the sense of
Shannon, we have, for the case described above.

THEOREM 2. $(Q) =C.
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