AN EXTENSION OF A THEOREM OF MANDELBROJT¹

R. A. KUNZE

- 1. **Introduction.** In a recent paper [3] S. Mandelbrojt proved several interesting theorems concerning Fourier transforms and analytic functions. One of these results can be formulated as follows:
- (1.1) Suppose $F \in L_{\infty}$, $a \ge 0$, and that k is never zero outside the closed interval $[-a, \infty]$ where k is the Fourier transform of a function K in L_1 such that $K * F \equiv 0$. Then there exists a function F_0 analytic in the right half plane with the properties

(i)
$$|F_0(x+iy)| \le ||F||_{\infty} e^{ax}, \qquad x > 0,$$

(ii)
$$\lim_{x \to +0} \int_{-N}^{N} |F_0(x+iy) - F(y)| dy = 0.$$

It is not difficult to show that the conclusion is satisfied if we assume only that there exists for each t in $(-\infty, -a)$ a function K in L_1 (depending upon t) such that $K * F \equiv 0$ and $k(t) \neq 0$. Our principal aim in this paper is to extend this latter improved version to n-dimensions. That such an extension exists follows almost immediately from a theorem of Y. Fourés and I. E. Segal [1] concerning causal operators and analytic functions (once it is established that a certain bounded operator T determined by F is causal). On the other hand as indicated by these authors some of the results in [1], specifically those pertaining to domains of dependence, admit improvement when treated from the point of view of Banach algebras; as one is led naturally to making these improvements in the course of showing that T is causal we shall begin our discussion at this point.

2. **Domains of dependence.** Throughout this part G will denote an arbitrary locally compact abelian group. As is well known, the Plancherel transform $U(U: L_2(G) \to L_2(\widehat{G}))$ establishes a one to one correspondence between bounded operators T on $L_2(G)$ that commute with translations and bounded measurable functions F on the dual group \widehat{G} . More precisely $T \leftrightarrow F$ if and only if $UTU^{-1} = M_F$ where M_F denotes the operation of multiplication by F on $L_2(\widehat{G})$. We recall that the spectrum or spectral set $\Lambda(F)$ of F is defined as the set of all x in G such that h(x) = 0 whenever h is the (inverse) Fourier transform

Received by the editors October 15, 1957.

¹ This research was supported in whole by the United States Air Force under Contract No. AF49(638)-42, monitored by the AF Office of Scientific Research of the Air Force office.

of a function K in $L_1(\widehat{g})$ such that $K * F \equiv 0$. The set of all such K forms a closed ideal I in $L_1(\widehat{g})$. A theorem of Segal's [2] asserts that (2.1) A sufficient condition that $K \in I$ is that its Fourier transform k vanishes outside a compact subset of the complement $\Lambda(F)'$ of $\Lambda(F)$.

DEFINITION 2.1. A bounded operator T is said to be *dependent* upon a subset E of G if Tg vanishes outside N+E whenever N is compact, $g \in L_2$ and g vanishes outside N.

DEFINITION 2.2. A bounded operator T has a domain of dependence if there exists a closed subset E of G such that T is dependent upon E and is not dependent upon any proper closed subset of E. E is called a domain of dependence of T.

THEOREM 2.1. Suppose T is a bounded operator on $L_2(\mathfrak{P})$ that commutes with translations. Then T has a unique domain of dependence E, and if $UTU^{-1} = M_F$, E is precisely the spectrum of F.²

LEMMA 2.1. If T is dependent upon a closed set E then $\Lambda(F) \subset E$.

Let $e \in E'$ and choose a compact neighborhood N of 0 such that E+N and e+N are disjoint. Suppose g, $h \in L_2$ and vanish outside N, e+N. Then (Tg)h=0 and taking Fourier transforms we get $(FG)*H\equiv 0$. Let x be a fixed character of G (i.e. an element of G) and denote the value of G at G by G and G by G by G by G and denote the value of G at G by G and denote the value of G at G by G by G by G by G by G and denote the value of G at G by G by

PROOF OF THE THEOREM. Since $\Lambda(F)$ is closed and in view of the result just established it suffices to show that T is dependent upon $E = \Lambda(F)$. Suppose then that $g \in L_2$ and vanishes outside a compact subset N. To show that Tg vanishes outside E + N it suffices to show that (Tg, h) = 0 for every h in L_2 , vanishing outside a compact subset C of (E + N)'. By Parseval's formula, it suffices to show that $\int FG\overline{H} = 0$. Now $\int FG\overline{H} = \int F[\overline{G}H]^- = F * (\overline{G}H)^*(o)$ and it is therefore sufficient to show that $F * (\overline{G}H)^* \equiv 0$. The Fourier transform of $(\overline{G}H)^*$ is $[g^* * h]^-$ and as g vanishes outside N, g^* vanishes outside N. Thus $[g^* * h]^-$ vanishes outside C - N. Furthermore C - N is compact and disjoint from E. Consequently (2.1) applies and we see that $F * (\overline{G}H)^* \equiv 0$.

² H. Helson obtained a similar characterization of the spectrum in an unpublished part of his thesis—Harvard, 1950.

REMARK. In the case of a real (finite dimensional) vector group the domain of dependence for T in the sense of Fourés-Segal is simply the closed convex set generated by $\Lambda(F)$.

3. Mandelbrojt's theorem. Throughout this part g will denote n-dimensional real Euclidean space regarded as a vector group. The dual of a cone C in g is the cone \hat{C} in the dual group \widehat{g} consisting of all x such that $(x \cdot t) \geq 0$ for all t in C. The tube Γ over \hat{C} is the set of all complex vectors x+iy, $x \in \hat{C}$, $y \in \widehat{g}$. Putting v for the vertex of C we define the spine of Γ to be the subset of all v+iy, $y \in \widehat{g}$. By means of an obvious correspondence we can identify functions on \widehat{g} with functions on the spine of Γ . A function F_0 defined on the interior Γ^0 of Γ is said to extend a function F on the spine, or to have boundary values on the spine if any sequence $x_n \rightarrow v$ with x_n in \hat{C}^0 has a subsequence x_m such that $F_0(x_m+iy) \rightarrow F(v+iy)$ a.e. relative to Lebesque measure.

A bounded operator T on $L_2(\mathfrak{P})$ is said to be *causal* with respect to C if Tg vanishes outside a+C whenever g is in L_2 and vanishes outside a+C, a being arbitrary in \mathfrak{P} . We shall use the following reformulation of the basic result concerning bounded causal operators given in [1].

(3.1) Suppose C is a closed convex cone with vertex at 0 and nonempty interior. Let T be a bounded operator on $L_2(\mathbb{G})$ that commutes with translations, and suppose F is the unique (modulo null functions) bounded measurable function on $\widehat{\mathbb{G}}$ such that $UTU^{-1}=M_F$ where U is the Plancherel transform,

$$U: L_2(\mathfrak{S}) \to L_2(\widehat{\mathfrak{S}})$$

and M_F is the operation of multiplication by F on $L_2(\mathbb{G})$. Then T is causal with respect to C if and only if there exists a function F_0 analytic on the interior of the tube Γ over the dual of C that extends F and satisfies the additional conditions,

(i)
$$|F_0(z)| \leq ||F||_{\infty}, \qquad z \in \Gamma^0$$

(ii)
$$\lim_{x \to 0} \int_{D} |F_{0}(x+iy) - F(y)|^{2} dy = 0$$

where $x\rightarrow 0$ in \hat{C}^0 and D is an arbitrary compact subset of the spine of Γ . Our extension of Mandelbrojt's theorem reads as follows.

THEOREM 3.1. Suppose $F \in L_{\infty}(\widehat{g})$ and that C is a closed convex cone in g with vertex at 0 and nonempty interior. Let a be a fixed element in C. Suppose further that there exists for each t outside C-a a function K in $L_1(\widehat{g})$ such that $K * F \equiv 0$ and $k(t) \neq 0$ where k is the (inverse) Fourier

transform of K. Then there exists a function F_0 analytic on the interior of the tube Γ over the dual of C extending F and having the additional properties,

(i)
$$|F_0(x+iy)| \leq ||F||_{\infty} e^{a \cdot x}$$

for all x in \widehat{C}^0 and y in \widehat{S} .

(ii)
$$\lim_{x \to 0} \int_{D} |F_{0}(x+iy) - F(y)|^{2} dy = 0$$

where $x\rightarrow 0$ in \hat{C}^0 and D is an arbitrary compact subset of the spine of Γ .

It is easy to see that the theorem follows, by translation, from the case a = 0. The details of this reduction are given in the following

LEMMA 3.1. If the theorem is true for a = 0 it is true in general.

Suppose $F \in L_{\infty}(\widehat{g})$ and that the additional hypotheses of the theorem are satisfied. Put $H(x) = e^{-i(a \cdot x)} F(x)$ and suppose $t \in C'$. Then $t-a \in (C-a)'$ and there exists K in $L_1(\widehat{g})$ such that $K * F \equiv 0$ and $k(t-a) \neq 0$ where $k(u) = (2\pi)^{-n/2} \int e^{i(u \cdot x)} K(x) dx$. Putting $L(x) = e^{-i(a \cdot x)} K(x)$ it follows that $1(t) = k(t-a) \neq 0$ and that $L * H(x) = e^{-(a \cdot x)} K * F(x) = 0$. Assume the theorem is true for the case a = 0, and let H_0 be the extension of H. Define F_0 by

$$F_0(x+iy) = e^{a \cdot (x+iy)} H_0(x+iy)$$

for $x \in \widehat{C}^0$ and $y \in \widehat{g}$. Then $|F_0(x+iy)| \le e^{a \cdot x} ||H||_{\infty} = e^{a \cdot x} ||F||_{\infty}$, and if D is a compact subset of the spine of Γ we have,

$$\begin{split} \int_{D} |F_{0}(x+iy) - F(y)|^{2} dy &= \int_{D} |e^{a \cdot (x+iy)} H_{0}(x+iy) - e^{ia \cdot y} H(y)|^{2} dy \\ &\leq \int_{D} |e^{a \cdot x} H_{0}(x+iy) - H(iy)|^{2} dy. \end{split}$$

Now $\int_D \left| e^{a \cdot x} H_0(x+iy) - H_0(x+iy) \right|^2 dy = (e^{a \cdot x} - 1)^2 \int_D \left| H_0(x+iy) \right|^2 dy$ $\to 0$ as $x \to 0$ in \hat{C}^0 , in view of (ii), and the fact that $(e^{a \cdot x} - 1)^2 \to 0$. Combining these estimates we see that $\int_D \left| F_0(x+iy) - F(y) \right|^2 dy \to 0$ as $x \to 0$ through values in \hat{C}^0 .

PROOF OF THE THEOREM. By the preceding lemma we can assume a=0. Now let T be the bounded operator on $L_2(g)$ given by the equation $T=U^{-1}M_FU$. It is apparent from (3.1) that it suffices to show that T is causal with respect to the cone C. Since T commutes with translations we need only show that Tg vanishes outside C whenever g is in L_2 and vanishes outside C. Furthermore as T is

bounded it suffices, by continuity, to consider the case that g vanishes outside a compact subset N of C. Now our assumptions clearly imply that the spectrum E of F is contained in C, and, by Theorem 2.1, T is therefore dependent upon E. Hence Tg vanishes outside E+N. Finally since C is closed under addition, E+N is contained in C which concludes the proof.

REFERENCES

- 1. Y. Fourés and I. E. Segal, *Causality and analyticity*, Trans. Amer. Math. Soc. vol. 78 (1955) pp. 385-405.
- 2. I. E. Segal, The group ring of a locally compact group I, Proc. Nat. Acad. Sci. vol. 27 (1941) pp. 348-352.
- 3. S. Mandelbrojt, La transformée de Fourier et les fonctions holomorphes dans demi-plan, J. Math. Pures Appl. vol. 35 (1956) pp. 211-222.

Massachusetts Institute of Technology