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1. Introduction. The category of ideals mentioned in the title may

be regarded, on the one hand, as a natural generalization of Mil-

gram's notion of 0-ideal [lO] and, on the other, as another specializa-

tion of the notion of i?-ideal [7]. Specifically, an 0„-ideal of C(X) is

an ideal J which satisfies the following condition:fufn£J implies the

existence of elements e£J and hi, hi£z.C(X) such that fi = hie, for

i=\, 2. We show that any ideal which is an intersection of prime

ideals is an 0w-ideal. Some results follow concerning the algebraic and

topological properties of such ideals. In the final section, we use some

results from [7] to obtain a necessary and sufficient condition that

the intersection of a family of prime ideals be an O-ideal.

§2 contains definitions and results to be used later, but in a much

more general form than necessary for the remainder of the paper. This

generality is consistent, however, with our continued interest in the

notion of i?-ideal.

2. Preliminaries. Let 5 be a set. By a proper subset of 5 is meant

a nonempty set JC.S such that J^S. We review briefly the defini-

tions of two familiar topologies which may be imposed on any family

© of proper subsets of S. For a subset 21 of ©, let us denote the set

U{ J: JG2I} more briefly by U21 and the set fljj: /£«} by D2I. Set
ei(«)= {/£©: JCUSl} and c,(H) = {/G©: -0021}. Now let fo de-
note the family of all sets 21C© such that C;(2l) =21, for » = 1, 2. The
dual Stone [Stone] topology is the smallest topology A [2] on © whose

family of closed sets includes ^[oS]. The resulting topological space

is designated by ©A [©s]- ft is known that Ci[c2] is the closure opera-

tion for A[2] if c1(2lVJ33)Cci(2l)Uc1(S)[c2(2fU33)Cc2(2I)Wc2(i8)],
for every pair of sets 2f, 33 C© (see [l], for example). When this in-

clusion holds, it is said that © admits the dual Stone [Stone] topol-

ogy.1 Our usage of such terms as "A-closure" and "2-closed" agrees

with [8]. A fact which we use several times without further mention

is that if £C©, then the topology induced on % by ©a[©s] is the

same as that of j£a[£s]- Thus, if © admits the dual Stone or the

Stone topology, so does every subset of ©.
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1 In the sense of [7], this is the same as saying that the dual Stone [Stone] para-

topology is a topology.
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Now suppose that S is endowed with a binary relation R. We recall

the following from [7].

Definition 1. A nonempty set IQS is an R-ideal provided (i)/£ J,

/z£S and hRf imply /?£/, and (ii) /i, /2£/ imply there exists e£J

such that/,i?e, for t = l, 2.

A subset which satisfies condition (i) of the definition is called an

ideal with respect to R. A subset satisfying condition (ii) is R-directed.

Analogues of Lemma 2.2 and Theorem 3.10 of [7] hold for the

family @ of all proper i?-ideals of S. Proofs of these results are easy

to construct, or may be patterned after the proofs of the correspond-

ing results just mentioned, and are therefore omitted.

Lemma I. If J is an R-ideal and Ji and J^ are ideals with respect to

R such that JQJi^JJi, then JQJi or JCZJz.

Theorem 1. The family of all proper R-ideals of a set S admits the

dual Stone topology.

Now assume that 5 is a commutative semigroup with identity.

That is, 5 is endowed with a binary associative multiplication such

that/g = g/ for all/, g£5, and S contains a (unique) element 1 such

that 1/=/ for all /£S. For A, BQS we let AB denote, as usual, the

set \ab:a^A and b^B}. A subset JCLS is a semigroup ideal (ab-

breviated s.g. ideal) if SJQJ. A s.g. ideal P is a prime s.g. ideal pro-

vided (S\P)(S\P) C.S\P. A principal s.g. ideal is a s.g. ideal J gener-

ated by a single element; i.e., for some/£S, J= [/], where [/] de-

notes the set fS.
Several relations on S are of interest here. The canonical order on

5 is the relation 0= {(/, e):fe=f\. The resulting concept of O-ideal

yields an extension of Milgram's notion [l0]. The relation which is

of chief concern in this paper is following natural extension of the

canonical order.

Definition 2. The weak canonical order on 5 is the relation 0U

= {(f,e):feeS}.
Of brief interest is the inverse O^1 of the weak canonical order:

0;1={(f,e):eEfS}.
For a fixed /£5, the set of h such that hO^f can be described in

two ways: By the definition of 0~\ it is the same as the set of h such

that fOZlh. On the other hand, it also coincides with the principal

ideal [/]. Hence, a set JC.S is a s.g. ideal if and only if / is an ideal

with respect to 0„, and if and only if S\J is an ideal with respect to

0~\
If P is a prime s.g. ideal of 5 and/, g£P, then/g£P. Since fO^fg
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and gO^fg, it follows that S\P is 0~'-directed. According to the above

observations, we have the result:

(1) If P is a prime s.g. ideal of S, then S\P is an O^-ideal.

Now let ty denote the set of proper prime s.g. ideals of S, and let

$' denote the set of complements of members of ty. The correspond-

ence P—+S\P obviously induces a homeomorphism from tyx to ^a-

Hence, as a corollary to Theorem 1, we have the essentially known

result [2]:

Corollary 1.1. The collection of proper prime s.g. ideals of S admits

the Stone topology.

The following characterization of O^-ideals in S is immediate.

(2) A subset J(ZS is an Ou-ideal if and only if (i) / is a s.g. ideal

and (ii) fu /a£/ imply there exist elements e£/ and h\, h2(E.S such that

fi = hie,for t = l, 2.
In particular, principal s.g. ideals and 0-ideals are obviously Ow-

ideals.

Now suppose (R, +, ■) is a commutative ring with identity, and

let 5 denote its multiplicative semigroup. An ideal of R is, as usual,

a subset JQR which is a s.g. ideal of >S such that J+JCZJ. A prime

ideal is, of course, an ideal which is a prime s.g. ideal of 5. For a

finite set/i,/2, • • • ,/» of elements of R, we let [/i,/2, • • • ,fn] denote

the smallest ideal of R which contains the elements /1, /2, • • • , /„.

Since a principal s.g. ideal of S is an ideal of R, this notation creates

no conflict with our earlier notation for principal s.g. ideals.

Finally, we list two useful results whose easy proofs are omitted.

(3) An Ou-ideal of S is an ideal of R.
(4) In order that every ideal of R be an O^-ideal, it is necessary and

sufficient that for every /1, /2£i?, the ideal [fi,/2] is an Oa-ideal.

3. Ou-ideals in C(X). Let Ibea topological space and let C(X)

denote the ring of all real-valued continuous functions on X under

ordinary pointwise addition and multiplication. For/£C(X), |/| de-

notes the member of C{X) defined by the identity |/| (x) = \f(x)\.

Theorem 2. If J is an ideal of C(X) which satisfies (*) /£/ implies

\f\ 1/2GJ, then J is an Ow-ideal.

Proof. We only have to show that / is Ow-directed. Suppose

/1, /2G/. Let e = (|/i| +|/2|)1/2. Then e£7 by hypothesis (since in

general, (*) implies that if /£/ then |/| £/). Now define

hi{x) = f,(x)/e(x)        if e(x) ^ 0, and

hi(x) = 0 if e{x) = 0, for i = 1, 2.
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Then hi£.C(X); the details follow from the inequalities

I *<(*) I   =  I /.(*) I /(I /i(«) I   + I /.(*) | )I/2 ̂  I /<(*) |1/2

which hold if e(x) ?^0.

It is clear that/< = feje, for * = 1, 2, so the proof of the theorem is .

complete.

Remark 1. Recall that the ra-topology on C(X) is the topology

having as a base for its neighborhoods of zero the sets UT = {/£ C(X):

\f\ <7r| where ir is a strictly positive member of C(X) [6; 5]. The

functions ht in the above theorem actually belong to the w-closure

of /. For let w be as above, and define gi=fi/(e+ir), for i = 1, 2. Then

| gi(x) — hi(x) |   < tt(x) for all x £ X.

For if e(x)=0, then fi(x) =hi(x) = 0, so the inequality is immediate.

Suppose e(x)^0. Then

| gi(x) — Ai(x) |   =  \fi(x) | 7r(x)/(e(a;)2 + e(x)r(x)).

Since

| /.(*) |     £(|/l(*)|    +   |/2(X)|)   =  6(X)2,

we have

|/<(x) | tt(x) < (e(x)2 + e(.t;)x(x))7r(a;),

which yields the desired inequality in this case also.

Remark 2. It is easy to see that a prime ideal of C(X) satisfies

condition (*) of the theorem. In particular, every maximal ideal of

C(X) is an 0„-ideal. Evidently, the intersection of ideals which satisfy

(*) also satisfies this condition. Hence, we have

Corollary 2.1. // / is an intersection of prime ideals of C(X), then

J is an Oa-ideal.

In virtue of [5, Theorem 9], the fact that maximal ideals are prime,

and Remark 1 above, we also have

Corollary 2.2. // / is an m-closed ideal, then J is an Ou-ideal such

that J2 = J.

To obtain the following corollary, we also use (3) above, of course.

Corollary 2.3. Suppose X and Y -are topological spaces and

T: C(X)^>C(Y) is a multiplicative isomorphism onto. If J has the

property of being (i) an intersection of prime ideals, (ii) an m-closed

ideal, or (iii) a maximal ideal of C(X), then the image of J is a (ring)

ideal of C( Y) with the corresponding property.
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By also making use of Theorem 1, we have

Corollary 2.4. The family of all proper prime ideals (and therefore,

the family of all maximal ideals) of C(X) admits the dual Stone topology.

The following theorem indicates that in general, C(X) contains

ideals which are not 0a-ideals. Recall that an .F-space is a space X

such that every finitely generated ideal of C(X) is principal [4].

Theorem 3.2 Every ideal of C(X) is an Oa-ideal if and only if X is

an F-space.

Proof. Suppose X is an F-space. Let/i,/2GC(X). The ideal [/1,/2]

is principal, and therefore is an 0„-ideal. Hence every ideal of C(X)

is an 0„-ideal, by (4) above.

Conversely, suppose every ideal of C(X) is an 0w-ideal. Among

several characterizations of F-spaces given in [4], one is that for

every f(EC(X), f belongs to [|/| ]. Now by hypothesis, the ideal

[(/VO), (/AO)] is an CVideal (where "V" and "A" denote the usual

lattice operations on C(X)). Therefore, there exist elements h, h', g

and g'<EC(X) such that

/ V 0 = h(g(fV 0) + g'(f A 0)), and

/A0 = h'(g(fV0)+g'(fA0)).

lif(x)>0, we have l=h(x)g(x) and 0=h'(x)g(x), while if/(x)<0,

we have 0 = h(x)g'(x) and 1 =h'(x)g'(x). Hence, with k = hg — k'g', we

have/ = &|/| G [|/| ], and the proof of the theorem is complete.

4. A property of prime ideals in C(X). It follows from [4, Theorem

1.4] and [7, Example 2.14] that every maximal O-ideal is an inter-

section of prime ideals. Actually, this is true of arbitrary 0-ideals in

a commutative ring R with zero radical; (we say that R has zero radi-

cal if, for/G-K and n a positive integer,/" = 0 implies/=0; for the

definition of the radical of an ideal, see [9, p. 99]).

Theorem 4. Every O-ideal I in a commutative ring R with zero

radical is an intersection of prime ideals.

Proof. Suppose /G-R is an element and n is a positive integer

such that /"G-f- There exists an element eG-f such that/ne=/n, so

/n(l— e)=0. Therefore (/(l — e))" = 0. Since R has zero radical, it

follows that/(l -e) =0 and hence f=fe£.E By Theorem 24 of [9], /,

being its own radical, is an intersection of prime ideals.

2 This corrects Theorem 2 of the abstract of this paper.
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It is now natural to ask when the intersection of a family of prime

ideals of C(X) is actually an O-ideal.

Let $ denote the family of proper prime ideals and 9JJ the family

of maximal O-ideals of C(X). If / is a function on a set S and A C.S,

we use/[yl] to denote the image, under/, of the set A. For I(ZC(X),

set $(/) = {PEf: ICP}. According to Corollary 1.1, $ admits the

Stone topology, and according to Corollary 2.4, **|3 also admits the

dual Stone topology. These topologies are not comparable if C(X)

contains a nonmaximal prime ideal P (that is, if X is not a P-space

[3, Theorem 5.3]). For if P is contained in the maximal ideal N, and

Pt^N, then {n} is a 2-closed set of ty which is not A-closed; and the

closure of {P} in $a is not 2-closed.

Lemma 2. If I is an O-ideal, then $(/) is closed in tys as well as in

<J3a.

Proof. It is immediate that *$(/) is closed in $z. To see that $(/)

is closed in %&, take Pa, a proper prime ideal, such that P0CU^}(J).

Suppose P0~$)I. Then there are elements/, e<E.T\P0 such that/e=/.

Therefore/(l-e)=0£P„, so l-e£P„. Thus, there is P£^ which

contains / and satisfies 1—e£P. But since e£/CP, we have 1£P,

which is a contradiction, since P is a proper ideal. Therefore P0Z)I,

and hence $(/) is closed in ^a-

Lemma 3. Let *$<, be a family of proper prime ideals containing a

fixed maximal O-ideal M. If $<, is a closed subset of tys as well as ty^,

then%=$(M).

Proof. There exists exactly one maximal ideal N such that M(ZN

(see a remark following 3.3 of [3] and 2.4 of [7]). Therefore every

proper ideal containing M is contained in N. Thus, i\On^$„ and

NE^o, since $„ is S-closed. Now if P£^(Af) then PC^CU^o, so

PG%, since % is A-closed. Hence, %=<$(M).

We now use several results from [7]: First, C{X) is an i?-ring (see

4.4, 4.5 (i) and (ii), and 5.3). Second, if P is a prime ideal, then it is

a prime-like ideal (see §2), so Lemma 4.18 is applicable and yields

the result that the set L{P) = \f:fe=f for some e£Pj is a maximal

O-ideal of C(X). Hence L is a function from $ to 9K. Lemma 4.16

implies that L is a continuous function from ^s to Wa- However, we

shall sketch a direct proof of this fact. Let ty„ be a collection of proper

prime  ideals  and  suppose   P„G^3   is   such   that   PO (")$„.   Then

L(P0) C U L[%],

for otherwise, there exist elements/, e, e'£L(P0)\U.L ["$<,] such that
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/e=/and ee'^e. Therefore, (l-e)e = 0E(]%- Now e$U%, since

MUL[%], so 1-e'GlTPoCPo. Since e'<=L(P0)CPo, we have 1GP<,
But P„ is a proper ideal, so this is impossible. Hence L(P„)CZ\JL[%]

and we have proved

Theorem 5. The function L is a continuous function from ^2 to SDIa-

We can now prove

Theorem 6. If % is a family of proper prime ideals which is a closed

subset of ^Ps as well as ^Al then D^po is an O-ideal.

Proof. Set 9J2,, = L [*$„]. For any maximal O-ideal M, it is obvious

that L-l({M}) = %(M), and therefore, by Lemma 2, L~l({M}) is

closed in both $2 and ^A. Thus %r\L~l(\M}) also has this prop-

erty, so, by Lemma 3, %r\L-\{M)) = <$(M) for every MGWc

Therefore M=ri(^onL-1({M})), by Theorem 4 or [4, Theorem

1.4]. Hence fl^0 = n21c0.

We now wish to know that 9J}<, is closed in 9J?a- This is a consequence

of the following facts: (i) $2 is compact by [7, Remark 3.7], Corol-

lary 2.4 and footnote 1 above; (ii) 9Ka is compact by [7, comments

prior to 5.1l]; (iii) % is closed in $2 by hypothesis and hence is com-

pact; (iv) 3D?<, = Z-[^„] is the continuous image of a compact set, so

W0 is A-compact; (v) since STJJa is a Hausdorff space [7, Corollary

4.9], m0 is closed in <mA.

Now the proof of the theorem can be completed. For by Theorem

3.9 of [7], the intersection of a family of maximal O-ideals which is

closed in the dual Stone topology is an O-ideal. Hence, H ̂ )30 = OSfJio

is an O-ideal.

Corollary 6.1. A necessary and sufficient condition that the inter-

section of a family of proper prime ideals ty„ be an O-ideal is that its

closure c2(ty0) in ^2 be closed in $a-

Proof. Suppose 1=0% is an O-ideal. Now c2(%) = $(1), and by

Lemma 2, this right hand set is closed in ^a- Conversely, suppose

c2(%) is a A-closed set of % It is certainly a 2-closed set. Therefore,

by the theorem, f)(c2(%)) is an O-ideal. But it is easy to see that

Cl% = r\(c2(%)).
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CORRESPONDANCES SINGULIERES PAR PARALLELISME
DES PLANS TANGENTS DES DEUX SURFACES

PAVEL DRAGILA

1. En etudiant la correspondance par parallelisme des plans tan-

gents, dans les points homologues des deux surfaces, Peterson et ses

continuateurs ont etabli qu'en cas de cette correspondance, sur

chaque surface il y a deux directions qui sont paralleles aux directions

correspond antes sur l'autre surface. lis croyaient avoir demontre

aussi que ces directions determinent toujours sur les deux surfaces

des reseaux conjugues. Nous savons deja que cette derniere assertion

n'est pas exacte.

Nous nous sommes propose un nouveau probleme, qui semble

presenter d'importance: chercher s'il y en a des couples de deux sur-

faces en correspondance de parallelisme, de maniere qu'elle existe

sur une surface une seule direction, tangente a. une courbe de co-

ordonnees, qui soit parallele a, la direction correspondante sur

l'autre surface, et, s'il est possible, de determiner effectivement des

telles surfaces.

Nous designons la premiere surface par S(x, y, z), la seconde par

S(x, y, z) et les derivees partielles dr/du, dr/dv, d2r/dudv ■ ■ •   par

' w, 'v, Tuv '      '•

Dans ce cas les coordonnees des deux surfaces doivent satisfaire

1'un des deux systemes:
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