ORDER AND COMMUTATIVITY IN BANACH ALGEBRAS
PHILIP C. CURTIS, JR.

S. Sherman has shown [4] that if the self adjoint elements of a C*
algebra form a lattice under their natural ordering the algebra is
necessarily commutative. In this note we extend this result to real
Banach algebras with an identity and arbitrary Banach * algebras
with an identity. The central fact for a real Banach algebra 4 is that
if the positive cone is defined to be the uniform closure of the set of
finite sums of squares of elements of 4, and if 4 is a lattice under the
ordering induced by this cone, then extreme points of the unit sphere
of the dual cone are multiplicative linear functionals. A similar situa-
tion holds for * algebras.

1. Real Banach algebras. Let X be a real Banach space, and let
C be a closed cone in X.! For x, y&EX we define x=y if x—y&EC. If
in addition X is a lattice under the ordering =, we say C lattice-
orders X. Let C’ be the dual cone and let = {f&C":||f]|<1}. The
set of extreme points of Y will be denoted by S. For a real linear
functional f let I;= {xEX: f(x) =0} and let R=Nse¢: I. Lastly if X
ils a|1 lattice we define x, =x\/0, x_=x /0, and Ix| =x,—x_. We note

x| 0.

LemMA 1. If C s a closed cone in a real Banach space X, then
i) R=CN—-C,

(i1) R=Nses I,

(iii) If C lattice-orders X, R={0}.

Proor. Obviously CN\—CCR. For the converse, by the Hahn-
Banach theorem x&C iff f(x) =0 for each f&(C’. Therefore RCCN
—C. For (ii) suppose x&ENses Iy, xR, then there exists an f&C’,
Hf“ =1, such that |f(x)| =2e50. But by the Krein-Milman theorem
there exist finitely many f;&S and real numbers «; such that
lf(x) - Za;fi(x)l <e. Hence for some 7, f;(x) #£0, which is a contra-
diction. Lastly let C lattice order X. Then x&C implies x=0 or
%x-=0, and *x&—C implies —x=0 or x,.=0. Since x=x,+x_,
xECN —C implies x=0.

The central tool in both this investigation and that of Sherman
is the following result of Krein and Krein [3]. It can be stated in a

Received by the editors August 5, 1957.
1 We refer the reader to [2] for the appropriate definitions of cone, dual cone, etc.
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slightly more general fashion, but the following is sufficient for our
purposes.

THEOREM 1. Let X be a real Banach space which is lattice ordered by
a cone C. Suppose in addition that C contains an element e, ||| =1,
such that {y:|le—yl| S1}CC. Then FESif |f(x)| =f(|x|) for each
x&cX.

Let us specialize to a real Banach algebra 4 with identity such
that |[1]]=1, and let C be the closure of the set of finite sums of
squares of elements of 4. By the familiar binomial series argument
(c.f. [2]), {3:]|1—9|| St} CC. Also, for fEC’ and x, yEA we have
the Schwartz inequality, [f(xy-+yx)]2=<4f(x2)f(y?), which may be
verified by the classical argument. Also useful is the following prop-
erty of functionals in C'.

LEMMA 2. Let A be a real Banach algebra, and let xS C, fEC'. Then
f(x) =0 implies f(x?) =0.

PrOOF. First assume x=7%?, and let f€C’. If ||x|| <1, the binomial
series for (1 —x)!? converges absolutely. Therefore 1 —x&C. More-
over since x=%2, y(1—x)"2=(1—x)"% and x(1—x)=[y(1—x)V2]?
&C. Therefore x—x220. Hence f(x) =0 implies f(x?)=0. We pro-
ceed now by induction. Let x = Y_22 3% and let f(x) =0. If =D 7., 4%,
then f(y2,,) =f(z) =0. We assume f(2?) =0, and by the above argu-
ment f(y5.1) =0. An application of the Schwartz inequality gives us

1/2

0 < 7)) = f((5 + 9)) = flaymss + yopd) S 2[7@) man)]” = 0.

Therefore the result holds for all finite sums of squares, and by con-
tinuity it holds for all x in C.

THEOREM 2. If C lattice-order A then each fES is a homomorphism
of A onto the real numbers, and A is commutative.

Proor. For x, yEA define the Jordan multiplication xoy
= (xy4yx)/2. Thus 4 can be considered as a Jordan ring with an
identity. We assert that for fE€.S, I, is a Jordan ideal. By Theorem 1
xE I, iff x,, x_EI,;. Therefore let x>0, x&1I;. By the Schwartz in-
equality and Lemma 2, for any yE4, [f(xy+yx)]? <47 (x?)f(y?) =0.
Hence xy+yxE1I;, and since I; is obviously closed under addition,
I; is a Jordan ideal.

Now a linear functional of any algebra over a field which takes the
identity of the algebra into the identity of the field is a homomor-
phism if its kernel is a two-sided ideal. Hence f is a Jordan homo-
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morphism of 4 onto the reals. On the other hand Jacobson and
Rickart [1, Theorem 2] have proved that a Jordan homomorphism
of a ring into an integral domain is either a homomorphism or an anti-
homomorphism. An application of this result proves that f is a homo-
morphism.

Finally for each f&.S and x, yE A4, xy —yx&EI,. Since by Lemma 1
Nses I;= {0}, A must be commutative.

2. Banach * algebras. Let 4 be a Banach * algebra with a con-
tinuous involution and an identity. Let C be the closure of the set of
finite sums of elements xx*. C is a closed cone in the real linear space
H of self adjoint elements of A. The dual cone of C (in the conjugate
space of H) can be identified with the set of those functionals f on
A for which f(xx*) 20 for each x€A4 (c.f. [2] for details). Let Y., S
be as before and for f&EC’ let I;= {xEA 1 f(x) =0} and R=Nee I,
We also note that {h€H:||1—k| <1} CC and for fEC’ the familiar
Schwartz inequality holds, i.e. lf(xy*)l L f(xx®)f(yy*), x, yEA.

LEmMA 3.
R=CN-CHi(CN —=0),

R=NI,.
ses

Proor. Let T=(CN—C)+i(CN—C). Obviously TCR. If xER,
let A= (x+x%)/2, k= (x—x*)/2:i. Then h, k are self adjoint, &, k€I,
and x=h+1k. But a self adjoint element y&Ciff f(y) =0 for each
fEC'. Therefore h, k& CN\—C and T=R. For the second assertion
if *€Nses I; and xR, we may assume x is self adjoint and apply
the argument of Lemma 1.

LEMMA 4. Let hEC and fEC'. Then f(k) =0 implies f(h?) =0.

PrOOF. If k=h*, and ||k]| £1, then by the familiar series argument
1 —h=Fk? where £ =£k*. Therefore 1 —hE C. Since kh=hk and khEEC,
khk=hk?*=h—h?*cC. Therefore f() =0 implies f(k%) =0.

TureoreM 3. If C lattice-orders H, then each fE S is a homomorphism
of A onto the complex numbers, and A is commutative.

Proor. To prove that f is a homomorphism it suffices to show that
for fE€S, I, is a two-sided ideal. Let xE1;, yEA. We assert xyE 1.
First we may assume « is self adjoint and by Theorem 1 we may as-
sume x=0. But then applying the Schwartz inequality

| Fx9) |2 < f(@&0)f(5*y) = 0.
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This proves xyEA and similarly yx&EA. Since I; is obviously closed
under addition, it is a two sided ideal. An application of Lemma 3
proves that 4 is commutative.
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UNIVERSITY OF CALIFORNIA AT LOs ANGELES

A NOTE ON VALUED LINEAR SPACES
PAUL CONRAD

Banaschewski [1] has given a simple and elegant proof of Hahn’s
embedding theorem for ordered abelian groups. His method can be
used to prove the author’s generalization of Hahn’s theorem [2,
p. 11]. In this note we make use of Banaschewski’s method to prove
a special case of the author’s theorem (which is also a generalization
of Hahn's theorem) that has been proven by Gravett [3].

Let (L, A, d) be a valued linear space [3]. That is, L is a vector
space over a division ring K, A is a linearly ordered set with minimum
element 6, and d is a mapping of L onto A such that for all x, y&EL,
d(x) =0 if and only if x=0, d(x) =d(kx) for all 0#kE€ K, and d(x+y)
<Max [d(x), d(y)]. For each €A, let C*= {xEL: d(x) =6} and let
Cs= {xeL: d(x) <o } Let W be the vector space of all mappings f of
A into the join of the spaces C°/C; for which f(8)&C%/C; and
R;={8€A: f(8)#Cs} is an inversely well ordered set. W is a sub-
space of the unrestricted direct sum V of the C*/Cs. W is also a
valued linear space (W, A, @), with d’(f) the largest d& R(f).
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