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S. Sherman has shown [4] that if the self adjoint elements of a C*

algebra form a lattice under their natural ordering the algebra is

necessarily commutative. In this note we extend this result to real

Banach algebras with an identity and arbitrary Banach * algebras

with an identity. The central fact for a real Banach algebra A is that

if the positive cone is defined to be the uniform closure of the set of

finite sums of squares of elements of A, and if A is a lattice under the

ordering induced by this cone, then extreme points of the unit sphere

of the dual cone are multiplicative linear functionals. A similar situa-

tion holds for * algebras.

1. Real Banach algebras. Let X be a real Banach space, and let

C he a closed cone in X.1 For x, yEX we define x^y if x—yEC. If

in addition X is a lattice under the ordering 2:, we say C lattice-

orders X. Let C be the dual cone and let £ = {/££': l|/|| ^ 1} • The

set of extreme points of 2l will be denoted by S. For a real linear

functional/ let I/= {x£I:/(x)=0} and let R = f)fec If- Lastly if X

is a lattice we define x+ = xV0, x_ = xA0, and |x| =x+ —x_. We note

|x| ^0.

Lemma 1. If C is a closed cone in a real Banach space X, then

(i) i? = CH-C,

(ii)i? = n/eSJ/,
(iii) If C lattice-orders X, R = {0}.

Proof. Obviously Cr\ — CER- For the converse, by the Hahn-

Banach theorem xEC iff/(x)^0 for each /EC. Therefore RECC\

— C. For (ii) suppose xE^/es If, xER, then there exists an/£C,

||/|| =1, such that |/(x)| =2e^0. But by the Krein-Milman theorem

there exist finitely many /,■££ and real numbers a,- such that

|/(*) — X/*i/;(x)| <e. Hence for some i, /,(x)f^0, which is a contra-

diction. Lastly let C lattice order X. Then xEC implies x^O or

x_ = 0, and xE~C implies —x^O or x+ = 0. Since x = x++x_,

xECC\ — C implies x = 0.

The central tool in both this investigation and that of Sherman

is the following result of Krein and Krein [3]. It can be stated in a
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1 We refer the reader to [2 ] for the appropriate definitions of cone, dual cone, etc.
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slightly more general fashion, but the following is sufficient for our

purposes.

Theorem 1. Let X be a real Banach space which is lattice ordered by

a cone C. Suppose in addition that C contains an element e, ||e|| = l,

such that \y:\\e-y\\^\]CC. Then fES iff \f(x)\ =/(|x|) for each
xEX.

Let us specialize to a real Banach algebra A with identity such

that |[l|| =1, and let C be the closure of the set of finite sums of

squares of elements of A. By the familiar binomial series argument

(c.f. [2]), {y: ||l-y||^l}CC. Also, for fEC and x, yEA we have

the Schwartz inequality, [/(xy+yx)]2fS4/(x2)/(y2), which may be

verified by the classical argument. Also useful is the following prop-

erty of functionals in C.

Lemma 2. Let A be a real Banach algebra, and let xEC, fEC. Then

f(x) — 0 implies f(x2) = 0.

Proof. First assume x = y2, and let fEC. If ||x|| gl, the binomial

series for (1 — x)1'2 converges absolutely. Therefore 1— xEC. More-

over since x = y2, y(l — x)"2 = (l — x)1/2y and x(l — x) = [y(l — x)1/2]2

EC. Therefore x — x2^0. Hence/(x)=0 implies f(x2) =0. We pro-

ceed now by induction. Let x = E*-i" 3"« and let/(x) =0. If z = E"-i V*<

then f(yl+x) =f(z) =0. We assume f(z2) =0, and by the above argu-

ment f(yt+x) =0. An application of the Schwartz inequality gives us

0 g /(**) = f((z + yl+x)*) = f(zyl+x + yl+xz) ̂  2[f(z*)f(yn+x)]1/2 = 0.

Therefore the result holds for all finite sums of squares, and by con-

tinuity it holds for all x in C.

Theorem 2. If C lattice-order A then each fES is a homomorphism

of A onto the real numbers, and A is commutative.

Proof. For x, yEA define the Jordan multiplication xoy

= (xy-|-yx)/2. Thus A can be considered as a Jordan ring with an

identity. We assert that iorfES, If is a Jordan ideal. By Theorem 1

x£//iffx+, x-EIf- Therefore let x2:0, xEIf- By the Schwartz in-

equality and Lemma 2, for any y£^4, \f(xy+yx)]2^if(x2)f(y2) =0.

Hence xy+yxEIf, and since If is obviously closed under addition,

If is a Jordan ideal.
Now a linear functional of any algebra over a field which takes the

identity of the algebra into the identity of the field is a homomor-

phism if its kernel is a two-sided ideal. Hence / is a Jordan homo-



1958] ORDER AND COMMUTATIVITY IN BANACH ALGEBRAS 645

morphism of A onto the reals. On the other hand Jacobson and

Rickart [l, Theorem 2] have proved that a Jordan homomorphism

of a ring into an integral domain is either a homomorphism or an anti-

homomorphism. An application of this result proves that/ is a homo-

morphism.

Finally for each/£5 and x, yEA, xy—yxEIf- Since by Lemma 1

("lyes If= JO}, A must be commutative.

2. Banach * algebras. Let A be a Banach * algebra with a con-

tinuous involution and an identity. Let C he the closure of the set of

finite sums of elements xx*. C is a closed cone in the real linear space

H of self adjoint elements of A. The dual cone of C (in the conjugate

space of H) can be identified with the set of those functionals / on

A for which /(xx*) i; 0 for each x£^4 (c.f. [2] for details). Let ^, S

be as before and lor fEC let //= [xEA :f(x) =0} and i? = M/Ge' If-

We also note that {hEH: ||l -h\\ gl} QC and for/£C" the familiar
Schwartz inequality holds, i.e. |/(xy*)|2^f(xx*)f(yy*), x, yEA.

Lemma 3.

r = c r\ - c + i(c n - c),

r = n if.
/es

Proof. Let T=(CC\-C)+i(Cr\-C). Obviously TER. If xER,
let h=(x+x*)/2, k = (x — x*)/2i. Then h, k are self adjoint, h, kEIf

and x — h+ik. But a self adjoint element yEC iff /(y)^0 for each

fEC. Therefore h, kECC\ — C and T = R. For the second assertion

if x£D/eS iy and x£i?, we may assume x is self adjoint and apply

the argument of Lemma 1.

Lemma 4. Let hEC and fEC. Then f(h) =0 implies f(h2) =0.

Proof. If h = h*, and \\h\\ gl, then by the familiar series argument

1 — h = k2, where k = k *. Therefore I—hEC. Since kh = hk and khk E C,
khk = hk2 = h-h2EC. Therefore f(h) =0 implies f(h2) =0.

Theorem 3. If C lattice-orders H, then eachfES is a homomorphism

of A onto the complex numbers, and A is commutative.

Proof. To prove that/ is a homomorphism it suffices to show that

for/GS, If is a two-sided ideal. Let xEIf, yEA. We assert xyEIf-

First we may assume x is self adjoint and by Theorem 1 we may as-

sume x^O. But then applying the Schwartz inequality

\f(xy)\2Zf(x2)f(y*y) =0.
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This proves xyEA and similarly yxEA. Since 2/ is obviously closed

under addition, it is a two sided ideal. An application of Lemma 3

proves that A is commutative.
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A NOTE ON VALUED LINEAR SPACES

PAUL CONRAD

Banaschewski [l] has given a simple and elegant proof of Hahn's

embedding theorem for ordered abelian groups. His method can be

used to prove the author's generalization of Hahn's theorem [2,

p. 11]. In this note we make use of Banaschewski's method to prove

a special case of the author's theorem (which is also a generalization

of Hahn's theorem) that has been proven by Gravett [3].

Let (L, A, d) be a valued linear space [3]. That is, L is a vector

space over a division ring A', A is a linearly ordered set with minimum

element 8, and d is a mapping of L onto A such that for all x, yEL,

d(x) =8 if and only if x = 0, d(x) =d(kx) for all O^kEK, and d(x+y)

^Max [d(x), d(y)]. For each 5£A, let Ci=[xEL: d(x) ^h] and let

Cs = {x EL: d(x) < 5 }. Let W be the vector space of all mappings / of

A into the join of the spaces C/d, for which f(d)ECs/Ct and

R/= {5£A: f(8)^Cs} is an inversely well ordered set. W is a sub-

space of the unrestricted direct sum V of the Ci/d. W is also a

valued linear space (W, A, d'), with d'(f) the largest SER(f).
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