BASIC SETS OF POLYNOMIAL SOLUTIONS FOR PARTIAL DIFFERENTIAL EQUATIONS

J. HORVÁTH

1. In this note I present an algebraic method for constructing basic sets of polynomials which are solutions of a linear homogeneous partial differential equation with constant coefficients. This method generalizes and unifies several known results (see §3).

Let $E=R^n$ (n>1) be the euclidean space of dimension n, whose points shall be $x=(x_1, \dots, x_n)$. The capital letters M and J will denote multi-indices $M=(m_1, \dots, m_n)$, $J=(j_1, \dots, j_n)$, where the m_i and j_i are positive integers; the corresponding lower-case letters will mean $m=|M|=m_1+\dots+m_n$. We shall also write $x^J=x_n^{j_1}\dots x_n^{j_n}$.

We consider a linear homogeneous partial differential operator with constant coefficients of order m of the form

$$D = \sum_{|M|=m} \alpha_M D^M$$

where

$$D^{M} = \frac{\partial^{m}}{\partial x^{M}} = \frac{\partial^{m}}{\partial x_{1}^{m_{1}} \cdot \cdot \cdot \cdot \partial x_{-n}^{m_{n}}}$$

Let VE be the symmetrical algebra of E, direct sum of the symmetrical powers $V^{j}E$ [1, §1, Exercises 1–2, p. 15]. We identify $V^{1}E$ with E and $V^{0}E$ with R. The vector space $V^{j}E$ has dimension $C_{n+j-1,j}$ over R (see §2) and has a basis formed by all products

$$(2) e^J = e_1^{j_1} \cdot \cdot \cdot \cdot e_n^{j_n}$$

with |J| = j, where e_1, \dots, e_n is the canonical basis of E. Consider the element

$$(3) a = \sum_{|M|=m} \alpha_M e^M \in V^m E$$

and let \mathfrak{a} be the ideal of $\forall E$ generated by a. Let $A_j = \mathfrak{a} \cap \forall^j E$ be the j-th homogeneous component of \mathfrak{a} ; clearly $A_j = \{0\}$ for j < m. For $x \in E$ let the element $x \vee \cdots \vee x$ (j factors) of $\forall^j E$ be written as x^j (this is not to be confused with x^j , which is a scalar). We have

Received by the editors August 21, 1957 and, in revised form, January 2, 1958.

$$(4) Dx^{i} \in A_{i}.$$

In fact from

$$\frac{\partial}{\partial x_i} x^j = j e_i x^{j-1}$$

it follows that

$$Dx^{j} = j(j-1) \cdot \cdot \cdot (j-m+1)ax^{j-m} \in A_{j}.$$

2. Consider now the quotient algebra $Q = VE/\alpha$, which is a graded algebra whose homogeneous components are the vector spaces $V^{i}E/A_{j}$. Let θ be the canonical homomorphism of VE onto Q, then it follows from (4) that the components of $\theta(x^{i})$ with respect to a given basis of $V^{i}E/A_{j}$ are homogeneous polynomials Y_{j} of degree j in x_{1}, \dots, x_{n} which satisfy the algebraic relation $DY_{j} = 0$.

In particular let Q_j be a supplementary subspace to A_j in $\bigvee^j E$. Then Q_j is canonically isomorphic to $\bigvee^j E/A_j$, with which we identify it, and θ becomes the projection of $\bigvee^j E$ onto Q_j , parallel to A_j .

Suppose that the coefficient $\alpha_{M^0} = \alpha_{(m_1, \dots, m_n)}^{0}$ in (1) is different from zero and take for Q_j the subspace spanned by all the products e^J where at least one of the relations $j_1 < m_1^0, \dots, j_n < m_n^0$ is satisfied. These products are linearly independent modulo A_j and their number (i.e. the dimension of Q_j) is

(5)
$$\binom{n+j-1}{j} - \binom{n+j-m-1}{j-m}.$$

Indeed, the number of all the solutions of the equation

$$(6) j_1 + \cdots + j_n = j$$

in positive integers j_1, \dots, j_n is $C_{n+j-1,j}$ and the number of those solutions of (6) which verify all the relations $j_1 \ge m_1^0, \dots, j_n \ge m_n^0$ is the same as the number of all the solutions of

$$\xi_1+\cdots+\xi_n=j-m$$

in positive integers ξ_1, \dots, ξ_n , i.e. $C_{n+j-m-1,j-m}$. Thus the number of those solutions of (6) for which at least one relation $j_i < m_i^0$ holds, is the difference (5).

The components Y_j^J of $\theta(x^j)$ with respect to the basis e^J of Q_j are linearly independent, since every one of them contains exactly one term x^J in which at least one j_i verifies $j_i < m_i^0$ and no two different polynomials Y_j^J contain the same term of this type. On the other

hand there are at most (5) linearly independent homogeneous polynomials Y_j of degree j which satisfy $DY_j = 0$, since there are altogether $C_{n+j-1,j}$ linearly independent homogeneous polynomials of degree j and $DY_j = 0$ gives $C_{n+j-m-1,j-m}$ linear relations among the coefficients of Y_j . These relations can be seen to be independent if we order D lexicographically according to M and DY_j according to the exponents of the x_i [8, Footnote p. 428].

Let us observe finally that the relation $\theta(x^{i+k}) = \theta(x^i)\theta(x^k)$ yields recurrence formulas between the Y_j^J .

3. Examples. (1) Consider the operator

$$\frac{\partial^m}{\partial x_1^m} + \cdots + \frac{\partial^m}{\partial x_n^m}.$$

The element a of (3) is now

$$e_1^m + \cdots + e_n^m$$

and a basis of Q_j is formed by all products e^J of (2) with $j_n < m$. To calculate the components of $\theta(x^j) \subset Q_j$ with respect to this basis we develop x^j according to the polynomial theorem and reduce every term in which an e^J occurs with $j_n \ge m$ using the relation

$$\stackrel{m}{e_n} = -\stackrel{m}{e_1} - \cdots - \stackrel{m}{e_{n-1}}$$

(see [2, pp. 56-58], where the detailed calculation is carried out for the case m=2). The coefficients of $\theta(x^j)$ with respect to our basis (e^j) will then be the polynomials of Miles-Williams [5; 6; 8]:

(7)
$$Y_{j}^{J}(x) = \sum_{i=1}^{n} (-1)^{[\mu_{n}/m]} \frac{j!}{\prod_{i=1}^{n} \mu_{i}! \prod_{i=1}^{n-1} \left(\frac{j_{i} - \mu_{i}}{m}\right)!} x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}}$$

where the summation extends over all systems μ_1, \dots, μ_n such that

$$\mu_i \equiv j_i \pmod{m}$$
 $i = 1, 2, \cdots, n-1,$

$$\sum_{i=1}^n \mu_i = j,$$

$$\mu_i \leq j_i,$$
 $i = 1, 2, \cdots, n-1.$

It is evident from the above construction that for n=2, m=2, the polynomials are the real and imaginary parts of $(x_1+ix_2)^i$ [6].

The present method for obtaining the polynomials (7) in the case m=2 figures in my paper [2], where it is used to calculate the Fourier

transform of $Y_j(x) \cdot |x|^{-n}$, where $Y_j(x)$ is a homogeneous harmonic polynomial of degree j. At that time I had no knowledge of the work of Miles and Williams, but the present article grew out of an effort to obtain a noncomputational proof of their results [5; 6; 7; 8; 9] and to extend them.

A very similar construction to the present one has been given by Protter [10] in the case n=3. He obtains all the powers x^j at once by considering the function $\exp x = \sum x^j/j!$. Still another similar construction figures in an earlier paper of Whittaker [11].

(2) For the wave operator

$$\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_{n-1}^2} - \frac{\partial^2}{\partial x_n^2}$$

the basis of Q_j is also formed by the e^J with $j_n < 2$, but for the expression of $\theta(x^j) \in Q_j$ in terms of this basis the relation

$$e_n^2 = e_1^2 + \cdots + e_{n-1}^2$$

is used. The polynomials obtained are again those of Miles and Williams [5] and differ from (7) in the absence of the factor $(-1)^{\lfloor \mu n/2 \rfloor}$.

(3) Consider the iterated Laplacian for the case n=2:

$$\Delta^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)^2.$$

The element a of (3) is now

$$(e_1^2 + e_2^2)^2 = e_1^4 + 2e_1^2e_2^2 + e_2^4.$$

A basis of Q_i is given by

and we have the relation

$$e_2^4 = -e_1^4 - 2e_1^2e_2^2$$

and more generally

$$e_2^{4t} = -(2t-1)e_1^{4t} - 2te_1^{4t-2}e_2^2$$

which can be proved by mathematical induction. This last relation yields²

¹ We shall write x, y instead of x_1 , x_2 .

² We shall write simply x^i instead of $\theta(x^i)$ in the sequel.

$$(xe_{1} + ye_{2})^{j} = \sum_{s=0}^{j} {j \choose s} x^{j-s} y^{s} e_{1}^{j-s} e_{2}^{s}$$

$$= x^{j} e_{1}^{j} + j x^{j-1} ye_{1}^{j-1} e_{2} + {j \choose 2} x^{j-2} y^{2} e_{1}^{j-2} e_{2}^{2} + {j \choose 3} x^{j-3} y^{3} e_{1}^{j-3} e_{2}^{3}$$

$$- \sum_{t=1}^{[j/4]} {j \choose 4t} x^{j-4t} y^{4t} e_{1}^{j-4t} \{ (2t-1)e_{1}^{4t} + 2te_{1}^{4t-2} e_{2}^{2} \}$$

$$- \sum_{t=1}^{[(j-1)/4]} {j \choose 4t+1} x^{j-4t-1} y^{4t+1} e_{1}^{j-4t-1} e_{2} \{ (2t-1)e_{1}^{4t} + 2te_{1}^{4t-2} e_{2}^{2} \}$$

$$- \sum_{t=1}^{[(j-2)/4]} {j \choose 4t+2} x^{j-4t-2} y^{4t+2} e_{1}^{j-4t-2} e_{2}^{2} \{ (2t-1)e_{1}^{4t} + 2te_{1}^{4t-2} e_{2}^{2} \}$$

$$- \sum_{t=1}^{[(j-3)/4]} {j \choose 4t+3} x^{j-4t-3} y^{4t+3} e_{1}^{j-4t-3} e_{2}^{3} \{ (2t-1)e_{1}^{4t} + 2te_{1}^{4t-2} e_{2}^{2} \} .$$

Collecting terms with the help of (9) and of

$$e_2^5 = -e_1^4 e_2 - 2e_1^3 e_2^2$$

we obtain the four homogeneous biharmonic polynomials of degree j

$$Y_{j}^{(j,0)} = \sum_{\mu=0}^{\lfloor j/2 \rfloor} (-1)^{\mu-1} (\mu - 1) \binom{j}{2\mu} x^{j-2\mu} y^{2\mu},$$

$$Y_{j}^{(j-1,1)} = \sum_{\mu=0}^{\lfloor (j-1)/2 \rfloor} (-1)^{\mu-1} (\mu - 1) \binom{j}{2\mu + 1} x^{j-2\mu-1} y^{2\mu+1},$$

$$Y_{j}^{(j-2,2)} = \sum_{\mu=0}^{\lfloor j/2 \rfloor} (-1)^{\mu-1} \mu \binom{j}{2\mu} x^{j-2\mu} y^{2\mu},$$

$$Y_{j}^{(j-3,3)} = \sum_{\mu=0}^{\lfloor (j-1)/2 \rfloor} (-1)^{\mu-1} \mu \binom{j}{2\mu + 1} x^{j-2\mu-1} y^{2\mu+1},$$

which are the coefficients of the four elements (8), respectively. These biharmonics are different from those of Miles and Williams [9], but are closely related to them.

It is very easy to obtain recurrence relations for the polynomials (10). Comparing

$$(xe_1 + ye_2)^{j+1} = \sum_{n=0}^{3} Y_{j+1}^{(j+1-\nu,\nu)} e_1^{j+1-\nu} e_2^{\nu}$$

with

$$(xe_1 + ye_2)(xe_1 + ye_2)^{j} = (xe_1 + ye_2) \cdot \sum_{\nu=0}^{3} Y_{j}^{(j-\nu,\nu)} e_1^{j-\nu} e_2^{\nu}$$

and using (9), we obtain for $j \ge 3$,

$$\begin{split} Y_{j+1}^{(j+1,0)} &= xY_{j}^{(j,0)} - yY_{j}^{(j-3,3)}, \\ Y_{j+1}^{(j,1)} &= xY_{j}^{(j-1,1)} + yY_{j}^{(j,0)}, \\ Y_{j+1}^{(j-1,2)} &= xY_{j}^{(j-2,2)} + yY_{j}^{(j-1,1)} - 2yY_{j}^{(j-3,3)}, \\ Y_{j+1}^{(j-2,3)} &= xY_{j}^{(j-3,3)} + yY_{j}^{(j-2,2)}. \end{split}$$

Analogous recurrence relations for the Miles-Williams biharmonics have been established by Wicht [12].

We could treat in a similar way the k times iterated Laplacian (m=2k) in n variables.

(4) Let us consider the operator

$$q\frac{\partial^3}{\partial x^3} + p\frac{\partial^3}{\partial x^2\partial y} + \frac{\partial^3}{\partial y^3}.$$

The basis of Q_i is now

and to find the components of $x^i \in Q_i$ we use the relation

(11)
$$e_2^3 = -qe_1^3 - pe_1^2e_2.$$

The homogeneous solutions $u_j(x, y)$, $v_j(x, y)$, $w_j(x, y)$ of degree j are defined by

$$(xe_1 + ye_2)^j = u_j(x, y)e_1^j + v_j(x, y)e_1^{j-1}e_2 + w_j(x, y)e_1^{j-2}e_2^2.$$

Comparing

$$(xe_1 + ye_2)^{j+k} = u_{j+k}e_1^{j+k} + v_{j+k}e_1^{j+k-1}e_2 + w_{j+k}e_1^{j+k-2}e_2^2$$

with

$$(xe_1 + ye_2)^{j}(xe_1 + ye_2)^{k}$$

$$= (u_je_1^{j} + v_je_1^{j-1}e_2 + w_je_1^{j-2}e_2)(u_ke_1^{k} + v_ke_1^{k-1}e_2 + w_ke_1^{k-2}e_2)$$

and using (11) we obtain

$$u_{j+k} = u_j u_k - q(v_j w_k + w_j v_k),$$

$$v_{j+k} = u_j v_k + v_j u_k - p(v_j w_k + w_j v_k) - q w_j w_k,$$

$$w_{j+k} = u_j w_k + v_j v_k + w_j u_k - p w_j w_k.$$

These relations are due to Lammel [3; 4, p. 194].

(5) Consider finally the Cauchy-Riemann operator

(12)
$$2\frac{\partial}{\partial \bar{z}} = \frac{\partial}{\partial x} + i\frac{\partial}{\partial y}.$$

We have now $e_1+ie_2=0$, every Q_i has dimension 1, basis e_1^i , and

$$(xe_1 + ye_2)^j = (xe_1 + yie_1)^j = (x + iy)^j e_1^j.$$

The homogeneous polynomials corresponding to (12) are

$$(x+iy)^j=z^j.$$

REFERENCES

- 1. N. Bourbaki, *Eléments de mathématique*, Livre II: Algèbre, Chaps. IV-V, Actualités Scientifiques et Industrielles, no. 1102, Paris, 1950.
- 2. J. Horváth, Singular integral operators and spherical harmonics, Trans. Amer. Math. Soc. vol. 82 (1956) pp. 52-63.
 - 3. E. Lammel, Über eine zur Differentialgleichung

$$(a_0(\partial^n/\partial x^n) + a_1(\partial^n/\partial x^{n-1}\partial y) + \cdots + a_n(\partial^n/\partial y^n))u(x,y) = 0$$

gehörige Funktionentheorie. I, Math. Ann. vol. 122 (1950) pp. 109-126.

- 4. ——, Generalizaciones de la teoría de las funciones de variables complejas, Segundo symposium sobre algunos problemas matemáticos que se están estudiando en Latino América, Villavicencio-Mendoza, 1954, pp. 191-197.
- 5. E. P. Miles, Jr. and E. Williams, A basic set of homogeneous harmonic polynomials in k variables, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 191-194.
- 6. ——, A note on basic sets of homogeneous harmonic polynomials, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 769-770.
- 7. ——, A basic set of polynomial solutions of the Euler-Poisson-Darboux and Beltrami equations, Amer. Math. Monthly vol. 63 (1956) pp. 401-404.
- 8. ——, The Cauchy problem for linear partial differential equations with restricted boundary conditions, Canadian J. Math. vol. 8 (1956) pp. 426-431.
- 9. ——, Basic sets of polyharmonic polynomials, Abstract, Amer. Math. Monthly vol. 63 (1956) p. 528.
- 10. M. H. Protter, Generalized spherical harmonics, Trans. Amer. Math. Soc. vol. 63 (1948) pp. 314-341.
- 11. E. T. Whittaker, On the partial differential equations of mathematical physics, Math. Ann. vol. 57 (1903) pp. 333-355.
- 12. M. C. Wicht, Recursion and interrelations for Miles-Williams biharmonics, Abstract, Amer. Math. Monthly vol. 64 (1957) p. 463.

University of Maryland