BASIC SETS OF POLYNOMIAL SOLUTIONS FOR
PARTIAL DIFFERENTIAL EQUATIONS

J. HORVATH

1. In this note I present an algebraic method for constructing basic
sets of polynomials which are solutions of a linear homogeneous
partial differential equation with constant coefficients. This method
generalizes and unifies several known results (see §3).

Let E=R" (n>1) be the euclidean space of dimension 7, whose

points shall be x=(xy, - - -, x,). The capital letters M and J will
denote multi-indices M = (my, + - -, mn), J=(j1, + * -, ja), where the
m; and j; are positive integers; the corresponding lower-case letters
will mean m=|M|=m+ - - - +m, We shall also write &=

We consider a linear homogeneous partial differential operator with
constant coefficients of order m of the form

1) D= Y auD¥
|M|=m
where
am am
DM . = .
9xM  Jxpr e - - Jarn

Let VE be the symmetrical algebra of E, direct sum of the sym-
metrical powers V/E [1, §1, Exercises 1-2, p. 15]. We identify V'E
with E and V°E with R. The vector space V/E has dimension Cpny;_1,;
over R (see §2) and has a basis formed by all products

(2) e =l en
with |J| =j, where ¢;, - - -, e, is the canonical basis of E.
Consider the element
3) a = Z ayeM € \\m E
| M |=m

and let a be the ideal of VE generated by a. Let 4;,=aN\ViE be the
Jj-th homogeneous component of a; clearly 4;={0} for j<m. For
xCE let the element x\/ - - - \/x (j factors) of ViE be written as x?
(this is not to be confused with x7, which is a scalar). We have
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(4) Dxi € A;.
In fact from

g
—_—xl = ]eixl"l
ax,'

it follows that
Dxi=j(j—1)---(j—m+ Daxim E 4,

2. Consider now the quotient algebra Q =VE/a, which is a graded
algebra whose homogeneous components are the vector spaces
ViE/A;. Let 0 be the canonical homomorphism of VE onto Q, then
it follows from (4) that the components of 8(x7) with respect to a
given basis of VIE/A; are homogeneous polynomials Y; of degree j
in %y, + - -, %, which satisfy the algebraic relation D ¥;=0.

In particular let Q; be a supplementary subspace to 4;in ViE. Then
Q; is canonically isomorphic to V/E/A4;, with which we identify it,
and 6 becomes the projection of V/E onto Q;, parallel to 4.

Suppose that the coefficient ayo=awm;,....my in (1) is different
from zero and take for Q; the subspace spanned by all the products
¢’ where at least one of the relations j; <m?, - - -, j, <m) is satisfied.
These products are linearly independent modulo 4; and their num-
ber (i.e. the dimension of Q;) is

) (n-}-j:—l)_(n-l—j:::—l).

Indeed, the number of all the solutions of the equation

(6) it ot =g
in positive integers ji, + + -, ja is Cnyj—1,; and the number of those
solutions of (6) which verify all the relations ji=m}, - - -, ja=my is

the same as the number of all the solutions of
£1+"°+£n=j_m

in positive integers &, + - -, £, i.6. Cayj—m—1,j—m. Thus the number of
those solutions of (6) for which at least one relation j; <mj{ holds, is
the difference (5).

The components Y)’ of 6(x7) with respect to the basis ¢/ of Q; are
linearly independent, since every one of them contains exactly one
term x/ in which at least one j; verifies j;<m{ and no two different
polynomials Yf contain the same term of this type. On the other
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hand there are at most (5) linearly independent homogeneous poly-
nomials Y; of degree j which satisfy DY;=0, since there are alto-
gether Cnyj1,; linearly independent homogeneous polynomials of de-
gree j and DY;=0 gives Cuij—m-1,j—m linear relations among the
coefficients of Y;. These relations can be seen to be independent if
we order D lexicographically according to M and DY; according to
the exponents of the x; [8, Footnote p. 428].

Let us observe finally that the relation 6(xit*) =0(x?)f(x*) yields
recurrence formulas between the V7.

3. Examples. (1) Consider the operator

o™ am
_t e —

dxm oxm

The element a of (3) is now

m m
% I

and a basis of Q; is formed by all products ¢/ of (2) with j,<m. To
calculate the components of 8(x?) ©Q; with respect to this basis we
develop x7 according to the polynomial theorem and reduce every
term in which an e/ occurs with j,=m using the relation

bn= — € — - — ey
(see [2, pp. 56-58], where the detailed calculation is carried out for
the case m =2). The coefficients of 8(x?) with respect to our basis (¢’)
will then be the polynomials of Miles-Williams [5; 6; 8]:

7 leam)  J! [n/m]! n
(M Vi) =2 (-1) — AR S
H IJ’i! H <]z ﬂz)[
i=1 i=1 m
where the summation extends over all systems y;, - - -, u, such that

ui = 7; (mod m) i1=1,2,---,n—1,
Z M = j7
=]
i = 75 i=1,2,---,n—1.
It is evident from the above construction that for n=2, m =2, the
polynomials are the real and imaginary parts of (x;+14x2)7 [6].

The present method for obtaining the polynomials (7) in the case
m =2 figures in my paper [2], where it is used to calculate the Fourier
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transform of Y;(x)- lxl“", where Y;(x) is a homogeneous harmonic
polynomial of degree j. At that time I had no knowledge of the work
of Miles and Williams, but the present article grew out of an effort
to obtain a noncomputational proof of their results [5;6;7;8;9] and
to extend them.

A very similar construction to the present one has been given by
Protter [10] in the case n=3. He obtains all the powers x at once
by considering the function exp x = »_x7/j!. Still another similar con-
struction figures in an earlier paper of Whittaker [11].

(2) For the wave operator

9? 9* 92
— .+

2 2 - 2
axy dx,_; ax,,

the basis of Q; is also formed by the ¢/ with j, <2, but for the expres-
sion of §(x?) €Q; in terms of this basis the relation

2 2 2
e&n=¢e1+ -+ e

is used. The polynomials obtained are again those of Miles and Wil-
liams [5] and differ from (7) in the absence of the factor (—1)»/2,
(3) Consider the iterated Laplacian for the case! n=2:

A2 <a2 + 62 )2
-~ \ox? ay?/)

The element a of (3) is now

1+ €)' = e1 + 2eres + en.
A basis of Q; is given by
(8) e{, 6{_162, ejldei, ei_se;

and we have the relation

4 4 22
) e = — &1 — 2e16;
and more generally
—2 2
e;t = — (2 — l)e:t — 2!6:t 232

which can be proved by mathematical induction. This last relation
yields?

! We shall write x, y instead of xi, x2.
2 We shall write simply %/ instead of 8(x7) in the sequel.
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) L\ jee e e s
(xel—l-yez)1= E(s)xJ ye’l e2

820
= xjei + jxj_lyei_lez + (]2 ) xj_2y2e{_2ez + (; >x’_3y3e’1—3e:

(1/4] - -
— (]> 4 “y“e; Y (Zt - l)el + 2te:t 28:}

[(7—1)/4] (

. 1>x1-4¢‘-1y4t+1e;—4e 1 {(Zt _ 1)81 n 2te:t ze:}

[(7—2) 4]

J
+
iz> J_4¢-2y4t+2e;l-4t—2e:{(2t _ l)el n 2teit 2e:}

4¢
[(—3)/4] ;
] j—4t—3 4¢4+3 j—4t—3 3 42 2
(41! N 3) X ¥ e1 62{(2t — 1)81 + 2te; 82} .

t=1
Collecting terms with the help of (9) and of
e: = — 6:82 — Zeie:,

we obtain the four homogeneous biharmonic polynomials of degree j

. {7/2] 7 .
Y;J,O) _ Z (_1)u L 1) (;)xy 2ny2n’
m

=0
[G—=1)/2]

(j—1,1) 1 —2u—1 2u41
AR S <u~1>(2 +1)’ i

p=0

. [i/2] 7 -
Y;J 22 _ S (-1 1 ( “> i 2;4y2u’

p=0

. [G—1)/2] y .
(7—3,3) =1 7 J—2u—1 2u+1
Y; > (=1 ( )x y,

pe=0 2# +1

which are the coefficients of the four elements (8), respectively. These
biharmonics are different from those of Miles and Williams [9],
but are closely related to them.

It is very easy to obtain recurrence relations for the polynomials
(10). Comparing

i+ (G+1—v,») j+1—»v »
(ver + }’ez) Z Vi €1 e

v=0

with
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(G—»,») j—v »

. 3
(xer + veo) (xer + yez)J = (xe1 + yeo)- E Y, er e
=0

and using (9), we obtain for j=3,

Y;i—l-l—l.o) - xY(J ,0) _ yY(J—fi »3)

Y](-]Hl) = 27 (.7 1,1 + Y(J 0)
Y;i—llﬂ) _ (1—2 2) + I/,(J—l 1) _ ZyY(J—?i »3)
Y;i—l2,3) . (J 3,3) + Y(J 2,2)

Analogous recurrence relations for the Miles-Williams biharmonics
have been established by Wicht [12].
We could treat in a similar way the % times iterated Laplacian
(m=2k) in n variables.
(4) Let us consider the operator
9° 93 a3

— + —
1 9x? 4 9x%y  9y?

The basis of Q; is now

i -1 i—2 2
81, €1 €2, €1 €2

and to find the components of x’&Q; we use the relation

3

(1) e = — qei — peres.

The homogeneous solutions u;(x, ¥), v;(x, ¥), w;(x, ¥) of degree j are
defined by

i i -1 i—2 2
(xer + yes)” = ui(x, y)er + vi(x, y)er ex + wi(x, y)er ea
Comparing
itk J+k— itk—2 2
(xe; + yes) = u,+ke1 gt Vjpr€1 'er + Witk€1 €2
with
i k
(we1 + yes) (xer + yeo)
i -1 i—2 2 k k—1 k—2 2
= (uje1 + vier es + wier es)(urer + ver €2 + wrer e2)

and using (11) we obtain
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Uipr = e — q(vwr + wine),
Vipk = Utk + v — p(vjwe + win) — quiwk,
Witk = U;Wi + V0 + Wiky — PW;Wk.

These relations are due to Lammel [3; 4, p. 194].
(5) Consider finally the Cauchy-Riemann operator

(12) 2 —=_—+i

We have now e;+ie. =0, every Q; has dimension 1, basis e}, and

(xey + yeg)j = (xe1 + yiel)j = (x + iy)je’;.
The homogeneous polynomials corresponding to (12) are
(x + iy)7 = 2.
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