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1. The purpose of this paper is to consider the existence of large

zeros for solutions of a class of nonlinear second order differential

equations considered recently by C. T. Taam [2; 3; 4]. Equations of

this type occur in astrophysics in considering the equilibrium of a

gaseous configuration in stellar space, in atomic physics in the form

of the Fermi-Thomas equation, and in mechanics in the study of free

vibration of a hard spring not subject to damping.

A solution will be an absolutely continuous real-valued function

with an absolutely continuous derivative and satisfying the differ-

ential equation almost everywhere in the sense of Caratheodory [S].

All solutions considered are different from the identically zero solu-

tion. All coefficients are assumed to be real-valued, bounded, Lebesgue-

measurable functions of a real variables x for x^O. For the existence

and uniqueness of solutions see Chapters I, II of [5].

2. Theorem 1. Let the following conditions be satisfied:

(i) fn(x) has a positive lower bound for x^O,

(ii) fi(x)^0,f<(x)E£(0, «), i = \,2, ■ ■ ■ ,n, x^0,//(x)^0,
(iii)  n a positive integer greater than one,

(iv) foi:tifi(x)x2^dx<cc.

Then,

(1) y" + Z fi(x)y2i~l ^ 0
i-l

has no solutions y(x) with arbitrarily large positive zeros.

Proof. According to Taam [2], for every solution y(x) of (1), y(x)

and y'(x) are bounded on 0^x< oo. Now let R(x) be an amplitude

variable defined for solutions y(x) of (1) by

(2) R(x) = (^+±fiy2^.

R(x) is positive for x^O and

(3) R'(x) = T,fiy2i!£ 0.
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Equations (2), (3) imply that for any solution y(x) of (1), y'(x) re-

mains bounded as x—>oo. Let us assume that y(x), a solution of (1),

has arbitrarily positive zeros

(4) xi, x2, • ■ ■ , Xj, x,+i, • • •

and let Xy be a zero for which y'(xj)>0. Let x, be the first zero of

y'(x) on (Xj, Xj+i). Upon integrating (1) over the interval (xy, Xy) we

have

(5) y'(xj) - y'(xj) + V' £ f^-Hx = 0,
J Xj     t'=l

or,

(6) y'(xj) = f Y,fty2^dx.
J Xj       »'=1

Now y'(x)>0 and y"(x) <0 so y(x) is concave downward on (xjy xy),

thus y'(x) is decreasing on (xy, £y). So on (x,-, xy) we have,

(7) 0 g y(x) <, y'(Xj)(x - xy);   0 ^ [y(x)]2-1 g [y'(x,)(x - *,)]»*-»

for t = l, 2, ■ ■ ■ , n. Now from (6) and (7) we have

(8) y'(xy) S   f" £fi[y'(xj)(x - Xj)]2^dx.
J Xj      t-1

Since y'(xy) is positive and bounded on (xy, xy) then for some index

k, lgi^w, we have,

(9) 1 ^ —- P £ fi[y'(xj) (x - x,)]2^ dx,
y'(xj)JXj  ,-i

or,

£ x^-Vidx.
Xj     t-1

As the zeros of y(x), a solution of (1), become arbitrarily large, and

since y'(xj) is bounded as Xy-^oo, then the right-hand side of (10)

tends to zero. Hence we reach a contradiction and the theorem holds.

3. Theorem 2. Let the following conditions be satisfied:

(i) fn(x) has a positive lower bound for x§:0,

(ii) /1(x)^0,//(x)^0,//(x)G£(0, =0), i=l, 2, ■ ■ ■ , n, x^O,

(iii) n a positive integer greater than one,

(iv) y(x) be a solution of (I) with arbitrarily large positive zeros.
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Then

/> oo        n

x ~^2fi(x)dx — oo.
0 i-l

Let us assume that (11) fails to hold and then show that there

exists a solution y(x) of (1) such that y'(m)=0, y(°o) = l which

implies that y(x) is not oscillatory for large positive values of x. This

is equivalent to showing the existence of a solution of the following

integral equation

(12) y(x) = 1 - f   (t-x)J2 fiy'^dt.
" x t=i

Making use of the method of successive approximation as indicated

by Atkinson [l], a solution to (12) may be shown to exist. Thus we

reach a contradiction to (iv).
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