ON A CLOSURE PROPERTY OF MEASURABLE SETS¹

EARL J. MICKLE

1. Introduction. Let X be a space. A real-valued set function $\Lambda(E)$ defined for all subsets E of X such that $0 \leq \Lambda(E) \leq \infty$ is called an outer measure if it satisfies the following conditions.

(i) $\Lambda(E) = 0$ if E is the empty set.

(ii) $\Lambda(E_1) \leq \Lambda(E_2)$ if $E_1 \subset E_2$.

(iii) $\Lambda(E) \leq \Lambda(E_1) + \Lambda(E_2) + \cdots$ if $E = E_1 \cup E_2 \cup \cdots$.

A set *E* is called Λ measurable if for every pair of subsets *P*, *Q* of *X* with $P \subset E$, $Q \subset X - E$, the equality $\Lambda(P \cup Q) = \Lambda(P) + \Lambda(Q)$ holds. Let $\mathfrak{M}(\Lambda)$ denote the family of Λ measurable sets. $\mathfrak{M}(\Lambda)$ is a completely additive class of sets and Λ is a measure on $\mathfrak{M}(\Lambda)$ (see, for example, Saks [2, pp. 45-45]). Numbers in square brackets refer to the bibliography at the end of this note. Λ is called regular if every set is contained in a Λ measurable set of equal Λ measure. Λ is called finite-valued if $\Lambda(X) < \infty$.

For each family \mathfrak{F} of subsets of X let there be associated a family $\mathfrak{S}(\mathfrak{F})$ of subsets of X satisfying the following conditions. (a) $\mathfrak{F} \subset \mathfrak{S}(\mathfrak{F})$. (b) If $\mathfrak{F}_1 \subset \mathfrak{F}_2$ then $\mathfrak{S}(\mathfrak{F}_1) \subset \mathfrak{S}(\mathfrak{F}_2)$. It is the purpose of this note to establish the following closure property of measurable sets.

THEOREM. Under the above conditions if the relationship $\mathfrak{S}[\mathfrak{M}(\Lambda)] = \mathfrak{M}(\Lambda)$ holds for every finite-valued regular outer measure Λ then it holds for every outer measure Λ .

As an application of this theorem let $\mathfrak{S}(\mathfrak{F})$ denote the family of set obtained from \mathfrak{F} by the operation (A) (see Saks [2, p. 47], for the definition of this operation). It is well known that in this case $\mathfrak{S}[\mathfrak{M}(\Lambda)] = \mathfrak{M}(\Lambda)$ for every outer measure Λ but as noted in Saks [2] the proof is much simpler if Λ is assumed to be regular (see, Kuratowski [1, p. 58]). Since $\mathfrak{S}(\mathfrak{F})$ in this case satisfies the above conditions (a) and (b), by the above theorem to show that $\mathfrak{S}[\mathfrak{M}(\Lambda)] = \mathfrak{M}(\Lambda)$ holds for every outer measure Λ it is sufficient to show that it holds for every finite-valued regular outer measure Λ .

2. Proof of the theorem. We first prove the following result.

LEMMA. If Λ is an outer measure in X and $E^* \oplus \mathfrak{M}(\Lambda)$ then there is a

Received by the editors April 3, 1958.

¹ Research supported by the Office of Ordnance Research, U. S. Army, contract number DA 33-019-ORD-2114.

finite-valued regular outer measure Λ^* in X such that $\mathfrak{M}(\Lambda) \subset \mathfrak{M}(\Lambda^*)$ and $E^* \in \mathfrak{M}(\Lambda^*)$.

PROOF. Since $E^* \oplus \mathfrak{M}(\Lambda)$ there is a pair of subsets P^* , Q^* of X such that $P^* \subset E^*$, $Q^* \subset X - E^*$ and

(1)
$$\Lambda(P^* \cup Q^*) < \Lambda(P^*) + \Lambda(Q^*) < \infty.$$

Set $R^* = P^* \cup Q^*$ and for each subset *E* of *X* set

$$\Lambda^*(E) = \text{gr.l.b. } \Lambda (H \cap R^*) \text{ for } E \subset H, H \in \mathfrak{M}(\Lambda).$$

It follows easily that Λ^* is an outer measure in X and for $E \subset X$ there is an $H \in \mathfrak{M}(\Lambda)$ such that $E \subset H$, $\Lambda^*(E) = \Lambda(H \cap R^*) = \Lambda^*(H)$.

For $E \in \mathfrak{M}(\Lambda)$ let P, Q be a pair of subsets of X with $P \subset E$, $Q \subset X - E$. Let $H \in \mathfrak{M}(\Lambda)$ be such that $P \cup Q \subset H$ and $\Lambda^*(P \cup Q) = \Lambda(H \cap R^*)$. Since $E \in \mathfrak{M}(\Lambda)$, $P \subset H \cap E \in \mathfrak{M}(\Lambda)$, $Q \subset H \cap (X - E) \in \mathfrak{M}(\Lambda)$,

(2)
$$\Lambda^*(P \cup Q) = \Lambda(H \cap R^*) = \Lambda(H \cap E \cap R^*) + \Lambda[H \cap (X - E) \cap R^*] \ge \Lambda^*(P) + \Lambda^*(Q).$$

By (iii) of §1 the equality sign holds in (2). Thus $E \in \mathfrak{M}(\Lambda^*)$ and $\mathfrak{M}(\Lambda) \subset \mathfrak{M}(\Lambda^*)$. From this fact it follows that Λ^* is regular. From (1) $\Lambda^*(X) = \Lambda(R^*) < \infty$. Since $\Lambda^*(P^* \cup Q^*) = \Lambda(P^* \cup Q^*) < \Lambda(P^*) + \Lambda(Q^*) \leq \Lambda^*(P^*) + \Lambda^*(Q^*)$, it follows that $E^* \in \mathfrak{M}(\Lambda^*)$.

The proof of the theorem stated in §1 is now immediate. Assume that $\mathfrak{S}[\mathfrak{M}(\Lambda)] = \mathfrak{M}(\Lambda)$ for every finite-valued regular outer measure Λ . Let Λ be an outer measure and let E^* be a set not in $\mathfrak{M}(\Lambda)$. By the preceding lemma there is a finite-valued regular outer measure Λ^* such that

(3)
$$\mathfrak{M}(\Lambda) \subset \mathfrak{M}(\Lambda^*), \quad E^* \oplus \mathfrak{M}(\Lambda^*).$$

Since $\mathfrak{S}[\mathfrak{M}(\Lambda^*)] = \mathfrak{M}(\Lambda^*)$ by assumption, from (3) and condition (b) of §1, $\mathfrak{S}[\mathfrak{M}(\Lambda)] \subset \mathfrak{S}[\mathfrak{M}(\Lambda^*)] = \mathfrak{M}(\Lambda^*)$ and $E^* \notin \mathfrak{S}[\mathfrak{M}(\Lambda)]$. Since E^* was any set not in $\mathfrak{M}(\Lambda)$, $\mathfrak{S}[\mathfrak{M}(\Lambda)] \subset \mathfrak{M}(\Lambda)$. Therefore, by condition (a) of §1, $\mathfrak{S}[\mathfrak{M}(\Lambda)] = \mathfrak{M}(\Lambda)$.

BIBLIOGRAPHY

1. C. Kuratowski, Topologie, I, Warsaw-Lwow, 1933.

2. S. Saks, Theory of the integral, New York, Stechert, 1937.

THE OHIO STATE UNIVERSITY