AUTOMORPHISMS OF PRODUCTS OF MEASURE SPACES

DOROTHY MAHARAM

1. Introduction. Let S be the measure-theoretic product of a (not necessarily countable) family of unit intervals, $S = \prod I_{\alpha}$, $\alpha \in A$. In this paper we shall prove that S has the following "realization" property: every "set automorphism" ϕ of S may be induced by some "point automorphism" T of S. (For the terms used, see below.) The particular case of this theorem in which ϕ is measure-preserving shows that S has "sufficiently many measure-preserving transformations" in the terminology of Halmos and von Neumann [1, p. 340].

When the number of factors I_{α} is countable, this theorem reduces, in the measure-preserving case at least, to a known property of normal measure spaces [2, p. 582]. The method of proof of the general theorem will apply, more generally, to any product of measure spaces in which (a) each factor has a separating sequence, and is of total measure 1, (b) every sub-product of countably many factors has the "realization" property itself. Thus, for example, any product of 2-point factors (of measure 1) will also have the realization property. We could even allow a finite number of the factors to have infinite (but σ -finite) measure, for the transformations considered need not preserve measure. However, we shall restrict attention to the theorem as first stated.

One feature needs remark. When the number of factors is countable, T is uniquely determined by ϕ , in the sense that if T_1 and T_2 are point-automorphisms which induce the same set-automorphism ϕ , then T_1 and T_2 can differ on a null set at most. But when $S = \prod I_{\alpha}$, $\alpha \in A$, where A is uncountable, T is by no means unique in this sense. For example, if T_1 is the identity transformation on S and T_2 the transformation which interchanges the coordinate values 0 and 1 wherever they occur, then T_1 and T_2 both induce the identity set-automorphism. But the set on which T_1 and T_2 differ can be shown to be nonmeasurable, having outer measure 1 and inner measure 0.

2. **Notation.** Let S be any measure space, and E its algebra of measurable sets modulo null sets. Thus if X is a measurable subset of S, its class modulo null sets, denoted by $\{X\}$ or x, is a typical member of E. If S' is another measure space, with E' as its measure algebra,

Presented to the Society, April 6, 1957 under the title *The realization of set-isomorphisms*; received by the editors March 3, 1958.

a point isomorphism¹ T from S to S' is a 1-1 mapping of S onto S' such that both T and T^{-1} take (i) measurable sets into measurable sets, (ii) null sets into null sets. (In the cases we are mainly concerned with, (ii) is a consequence of (i).) A set isomorphism¹ ϕ from S to S' is simply an isomorphism from E to E', that is, a 1-1 mapping of E onto E' which preserves suprema and complements, but not necessarily measure. Thus every T induces a ϕ by the rule $\phi(x) = \{T(X)\}$, $X \subseteq x$. When S = S' and E = E' we speak of point and set automorphisms.

Throughout what follows, we assume $S = \prod I_{\alpha}$, $\alpha \in A$, where each I_{α} is a unit interval of real numbers. For each nonempty $B \subset A$, we write S(B) for the partial product $\prod I_{\alpha}$, $\alpha \in B$, using S(B) to denote both the product set and the measure space on it. For simplicity of notation, we also disregard the order of the factors, writing e.g. $S = S(A) = S(B) \times S(A - B)$. \varnothing is used for the empty set, and we assume throughout that $A \neq \varnothing$.

If $C \subset B \subset A$, the "projection" $\pi_{BC} : S(B) \to S(C)$ is defined as usual by $\pi_{BC}(p) = q$, where $p \in S(B)$ and the α th coordinate q_{α} of q is p_{α} , $\alpha \in C$. When B = A, π_{AC} is abbreviated to π_{C} .

 S^B denotes the family of "cylinders" on the measurable subsets of S(B), i.e., of sets $\pi_B^{-1}(X) = X \times S(A - B)$ where X is a measurable subset of S(B). The algebra of measurable sets modulo null sets of S(B) will be written E(B), and that of S^B (modulo null sets of S(A)) will be written E^B . It is well known (but not completely trivial) that π_B induces a measure-preserving isomorphism, which we denote by π_B also, from E^B to E(B).

3. Some lemmas.

LEMMA 1. Let E_1 , E_2 be the measure algebras of two σ -finite measure spaces S_1 , S_2 , and let E_3 be the measure algebra of $S_1 \times S_2$. Then, given automorphisms ψ_1 , ψ_2 of E_1 , E_2 , there is a unique automorphism ψ_3 of E_3 such that

$$\psi_3(x \times y) = \psi_1(x) \times \psi_2(y) \qquad (x \in E_1, y \in E_2).$$

The units e_1 , e_2 , of E_1 , E_2 , may be partitioned into disjoint elements $a_{1n} \in E_1$, $a_{2n} \in E_2$ $(n = 1, 2, \cdots)$, of finite measure, such that whenever $y \le a_{in}$ (i = 1, 2) we have (1/n) meas $y \le \max \psi_i(y) \le n$ meas y. It is a routine matter to extend the correspondence

$$\psi_3(x \times y) = \psi_1(x) \times \psi_2(y)$$
 $(x \le a_{1m}, y \le a_{2n})$

¹ This terminology differs from that in [1], where isomorphisms are required to be measure-preserving.

to an isomorphism between the ideals A_{mn} and B_{mn} of E_3 , where A_{mn} consists of all elements $\leq a_{1m} \times a_{2n}$ and B_{mn} of all elements $\leq \psi_1(a_{1m}) \times \psi_2(a_{2n})$, and thence to extend ψ_3 to all of E_3 . The proof that ψ_3 has the stated property, and of its uniqueness, presents no difficulty.

LEMMA 2. Let ϕ be a set automorphism of $S = \prod I_{\alpha}$, and let T be a 1-1 mapping of S onto itself such that, for each finite set C of suffixes α , and for each measurable set K of S^{C} , $T(K) \in \phi\{K\}$ and $T^{-1}(K) \in \phi^{-1}\{K\}$. Then T is a point automorphism of S, and induces ϕ .

Let $\mathfrak B$ be the Borel field generated by all sets of the form K, i.e., by all cylinder sets which are based on measurable sets in *finite* products of I_{α} 's. We recall that $\mathfrak B$ generates S in the following sense: (1) each measurable subset of S differs from some set in $\mathfrak B$ by a null set, (2) each null subset of S is contained in some null set in $\mathfrak B$. Now it is easy to see that the measurable subsets X of S which have the property:

(3)
$$T(X) \in \phi\{X\} \text{ and } T^{-1}(X) \in \phi^{-1}\{X\},$$

form a Borel field. Hence every set in $\mathfrak B$ has this property. From (2) it follows that T(X) and $T^{-1}(X)$ are null whenever X is null, and hence (1) shows that every measurable X has the property. In particular, T(X) and $T^{-1}(X)$ are measurable if X is, so T is a point automorphism of S; and clearly T induces ϕ .

DEFINITION. Let ϕ be a given automorphism of E. A set $B \subset A$ will be called "invariant" (under ϕ) if $\phi(E^B) = E^B$. Restricted to E^B , ϕ will then be an automorphism of E^B .

Lemma 3. Each countable set $B \subset A$ is contained in some countable subset \overline{B} of A which is invariant.²

Let $B_0 = B$, and take a countable basis b_{0m} , $m = 1, 2, \cdots$, for E^{B_0} (apply π_B^{-1} to a countable basis for E(B)). Consider the elements $\phi^n(b_{0m})$ ($n = 0, \pm 1, \pm 2, \cdots$). The properties (1) and (2) stated at the beginning of the proof of Lemma 2, show that each of these measure classes contains a set which is a cylinder on only countably many coordinates; hence there is a countable set $B_1 \subset A$ such that every $\phi^n(b_{0m})$ is in E^{B_1} . Take a countable basis b_{1m} , $m = 1, 2, \cdots$, for E^{B_1} , and repeat the process, obtaining a countable set B_2 ; and so on. Then $\bigcup B_k$ ($k = 0, 1, \cdots$) is the countable invariant set required.

LEMMA 4. Every set-automorphism of the unit interval can be induced by a point-automorphism.

² More generally, each $B \subseteq A$ is contained in an invariant set $\overline{B} \subseteq A$ of cardinal $\leq \max(|S_0, |B|)$. It can be shown that, given $B \neq \emptyset$, there is a *smallest* \overline{B} .

Let ϕ be a set-automorphism of the unit interval I, and for each $t \in I$ let I_t denote the interval from 0 to t. The mapping U defined by $U(t) = \max \phi\{I_t\}$ is a point-automorphism of I, and induces a set-automorphism ψ . Since U maps I_t onto the interval from 0 to U(t), we have meas $\psi\{I_t\} = \max \phi\{I_t\}$ for each $t \in I$; it follows that $\psi(x)$ and $\phi(x)$ have the same measure for each class x in the measure algebra of I. Thus $\psi^{-1}\phi$ is a measure-preserving set-automorphism of I, and [2] there is a point-automorphism V of I which induces $\psi^{-1}\phi$. Then UV is a point-automorphism of I which induces ϕ .

LEMMA 5. Let $S = \prod I_a$, $\alpha \in A$, and let B be any subset of A for which A - B is countable. Suppose ϕ is a set-automorphism of S which, restricted to E^B , is the identity mapping of E^B . Then there exists a point-automorphism T of S which induces ϕ , and which satisfies $\pi_B T = \pi_B$.

Note that the hypothesis on ϕ implies that B is invariant.

Write C = A - B; by Lemma 3, $C \subset \overline{C} \subset A$ where \overline{C} is countable and invariant. Writing $D = \overline{C} - C$, we have $D \subset B$. Now, since $\phi(E^{\overline{C}}) = E^{\overline{C}}$, ϕ induces an automorphism $\phi_1 = \pi_{\overline{C}} \phi \pi_{\overline{C}}^{-1}$ on $E(\overline{C})$. And, because \overline{C} is countable, $S(\overline{C})$ is isomorphic, under a measure-preserving point-isomorphism, to I. Hence, by Lemma 4, there exists a point-automorphism T_1 of $S(\overline{C})$ which induces ϕ_1 .

Suppose first that $D \neq \emptyset$. Then we can regard $S(\overline{C})$ as $S(D) \times S(C)$, and have (because ϕ is the identity on E^B)

$$\phi(e(A - \overline{C}) \times x \times e(C)) = [e(A - \overline{C}) \times x] \times e(C) \text{ for each } x \in E(D),$$

 $e(A-\overline{C})$ and e(C) denoting the unit elements of $E(A-\overline{C})$, E(C). Hence $\phi_1(x\times e(C))=\pi_{\overline{C}}\phi\pi_{\overline{C}}^{-1}(x\times e(C))=x\times e(C)$ for each $x\in E(D)$. Thus, for each measurable subset X of S(D), $T_1(X\times S(C))$ differs from $X\times S(C)$ by a null set. Apply this to the sets $T_1^i(X_n)$ $(i=0,\pm 1,\cdots,n=1,2,\cdots)$ in turn, where X_1,X_2,\cdots , forms a separating sequence of measurable sets in S(D); we obtain countably many null sets with union N, say. Then N is null, $T_1(N)=N=T_1^{-1}(N)$, and

$$T_1[(X_n \times S(C)) - N] = (X_n \times S(C)) - N \qquad (n = 1, 2, \cdots).$$

Define a transformation T_2 on $S(\overline{C})$ by:

$$T_2(p) = T_1(p) \text{ if } p \in S(\overline{C}) - N; \qquad T_2(p) = p \text{ if } p \in N.$$

Clearly T_2 is another point-automorphism of $S(\overline{C})$ which also induces ϕ_1 ; and we now have

$$T_2(X_n \times S(C)) = X_n \times S(C) \qquad (n = 1, 2, \cdots).$$

As X_1, X_2, \cdots , is a separating sequence, it follows that

$$T_2(p \times S(C)) = p \times S(C) \qquad (p \in S(D)),$$

and hence that

$$T_2(X \times S(C)) = X \times S(C)$$
 for every $X \subset S(D)$.

Finally we define T by

$$T(p \times q) = p \times T_2(q)$$
 where $p \in S(A - \overline{C})$ and $q \in \overline{C}$.

Then T is clearly a point-automorphism of S, and it is easily seen that $\pi_B T = \pi_B$. To show that T induces ϕ , it is enough to prove (by a double application of Lemma 1) that if $X \in x \in E(A - \overline{C})$, $Y \in y \in E(D)$, $Z \in z \in E(C)$, then $T(X \times Y \times Z) \in \phi(x \times y \times z)$, and this can be done by a straightforward calculation.

If $D = \emptyset$, we define $T_2 = T_1$ on $S(\overline{C}) = S(C)$, and define T as before; only minor (simplifying) adjustments are needed in the argument.

LEMMA 6. Let $S = \prod I_a$, $\alpha \in A$, and let B be any subset of A for which A-B is countable. Suppose ϕ is a set-automorphism of S, and that B is invariant under ϕ , so that ϕ restricted to E^B induces an automorphism ϕ' of E(B). Then, given any point-automorphism T' of S(B) which induces ϕ' , there exists a point-automorphism T of S which induces ϕ , and which satisfies $\pi_B T = T' \pi_B$.

Lemma 5 is the special case when T' = identity, and we reduce the general case to the special one. By Lemma 1, there exists an automorphism ψ of E such that

$$\psi(x \times y) = \phi'(x) \times y, \qquad x \in E(B), y \in E(A - B).$$

Then $\theta = \phi \psi^{-1}$ is also an automorphism of E; and, using the fact that $\phi' = \pi_B \phi \pi_B^{-1}$, it is easy to see that θ is the identity mapping on E^B . By Lemma 5, there exists a point-automorphism T^* of S which induces θ on E, and which satisfies $\pi_B T^* = \pi_B$. Define

$$T(p \times q) = T^*(T'(p) \times q), \qquad p \in S(B), q \in S(A - B).$$

Then T is clearly a point-automorphism of S, and it is a straightforward matter to verify that T has the desired properties.

4. THEOREM. Let $S = \prod I_{\alpha}$, $\alpha \in A$, and let ϕ be a set-automorphism of S. Then there exists a point-automorphism T of S which induces ϕ .

Consider the family of ordered pairs $(B_{\lambda}, T_{\lambda})$ where (i) B_{λ} is a subset of A which is invariant under ϕ , (ii) T_{λ} is a point-automorphism of $S(B_{\lambda})$, and (iii) the automorphisms of $E(B_{\lambda})$ induced by ϕ restricted to $E^{B_{\lambda}}$ (i.e., $\pi_{B_{\lambda}}\phi\pi_{B_{\lambda}}^{-1}$), and by T_{λ} , are the same. Say that $(B_{\lambda}, T_{\lambda}) < (B_{\mu}, T_{\mu})$ provided that $B_{\lambda} \subset B_{\mu}$ and $\pi_{\mu\lambda}T_{\mu} = T_{\lambda}\pi_{\mu\lambda}$ on $S(B_{\mu})$.

Here $\pi_{\mu\lambda}$ is used as an abbreviation for $\pi_{B_{\mu}B_{\lambda}}$; similarly we shall abbreviate $\pi_{B_{\lambda}}$ to π_{λ} . The partial ordering so defined is clearly transitive. Further, every linearly ordered subfamily $\{(B_{\mu}, T_{\mu}), \mu \in M\}$ has an upper bound in the family. To see this, define $B' = \bigcup B_{\mu}$; this is an invariant subset of A (under ϕ). Given $p \in S(B')$ and $\alpha \in B'$, pick any $B_{\mu} \supseteq \alpha$, and let q_{α} be the α th coordinate of $T_{\mu}(\pi_{\mu}(p))$. It is easy to see that q_{α} is independent of the choice of μ , and we define T'(p) to be the point of S(B') having α th coordinate q_{α} ($\alpha \in B'$). A straightforward calculation, using Lemma 2, shows that (B', T') is a member of our family, and that $(B_{\mu}, T_{\mu}) < (B', T')$ for each $\mu \in M$.

By Zorn's lemma, it follows that there is a maximal member (B, T) of the family (note that the family is not vacuous, from Lemmas 3 and 4). It is enough to prove that B=A, for condition (iii) above then shows that T induces ϕ . Suppose not, and pick $\alpha \in A-B$; by Lemma 3 there is a countable set $D \subset A$, invariant under ϕ , which contains α . Let $B^*=B \cup D$; then B^* is also invariant, and $\phi^*=\pi_B*\phi\pi B^{*-1}$ is an automorphism of $S^*=S(B^*)$. We apply Lemma 6 to the product space S^* , with invariant subset B, set-automorphism ϕ^* and point-automorphism T, obtaining a point-automorphism T^* of S^* which induces ϕ^* and satisfies $\pi_B*_BT^*=T\pi_B*_B$. But now (B^*, T^*) is a member of the family defined above, and it contradicts the maximality of (B, T), since $(B, T) < (B^*, T^*)$ and $B \neq B^*$. This contradiction establishes the theorem.

REFERENCES

- 1. P. Halmos and J. von Neumann, Operator methods in classical mechanics II, Ann. of Math. (2) vol. 43 (1942) pp. 332-350.
- 2. J. von Neumann, Einige Sätze über messbare Abbildungen, ibid. vol. 33 (1932) pp. 574-586.

University of Manchester, Manchester, England