
AUTOMORPHISMS OF PRODUCTS OF MEASURE SPACES

DOROTHY MAHARAM

1. Introduction. Let S be the measure-theoretic product of a (not

necessarily countable) family of unit intervals, 5=JrJ/c„ aEA. In

this paper we shall prove that S has the following "realization" prop-

erty: every "set automorphism" <p of 5 may be induced by some

"point automorphism" T of S. (For the terms used, see below.) The

particular case of this theorem in which <j> is measure-preserving

shows that 5 has "sufficiently many measure-preserving transforma-

tions" in the terminology of Halmos and von Neumann [l, p. 340].

When the number of factors Ia is countable, this theorem reduces,

in the measure-preserving case at least, to a known property of nor-

mal measure spaces [2, p. 582]. The method of proof of the general

theorem will apply, more generally, to any product of measure spaces

in which (a) each factor has a separating sequence, and is of total

measure 1, (b) every sub-product of countably many factors has the

"realization" property itself. Thus, for example, any product of 2-

point factors (of measure 1) will also have the realization property.

We could even allow a finite number of the factors to have infinite

(but cr-finite) measure, for the transformations considered need not

preserve measure. However, we shall restrict attention to the theorem

as first stated.

One feature needs remark. When the number of factors is counta-

ble, T is uniquely determined by </>, in the sense that if Pi and P2 are

point-automorphisms which induce the same set-automorphism <p,

then Ti and T2 can differ on a null set at most. But when S= XlP»

aEA, where A is uncountable, T is by no means unique in this sense.

For example, if Pi is the identity transformation on S and P2 the

transformation which interchanges the coordinate values 0 and 1

wherever they occur, then Ti and P2 both induce the identity set-

automorphism. But the set on which Px and P2 differ can be shown to

be nonmeasurable, having outer measure 1 and inner measure 0.

2. Notation. Let S be any measure space, and £ its algebra of

measurable sets modulo null sets. Thus if X is a measurable subset of

S, its class modulo null sets, denoted by [X] or a:, is a typical member

of P. If S' is another measure space, with £' as its measure algebra,
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a point isomorphism1 T from S to S' is a 1-1 mapping of 5 onto S'

such that both T and T~l take (i) measurable sets into measurable

sets, (ii) null sets into null sets. (In the cases we are mainly concerned

with, (ii) is a consequence of (i).) A set isomorphism1 <p from 5 to5'

is simply an isomorphism from £ to £', that is, a 1-1 mapping of £

onto £' which preserves suprema and complements, but not necessar-

ily measure. Thus every T induces a <p by the rule <p(x) = { TiX)},

A"£x. When S = S' and £ = £' we speak of point and set automor-

phisms.

Throughout what follows, we assume 5= IlL<> <xG.A, where each

Ia is a unit interval of real numbers. For each nonempty B(ZA, we

write SiB) for the partial product H/a, aSP, using 5(B) to denote

both the product set and the measure space on it. For simplicity of

notation, we also disregard the order of the factors, writing e.g.

S = SiA) =5(P) XSiA -B). 0 is used for the empty set, and we as-

sume throughout that A 9^0.

If CC.BQA, the "projection" irBc'- 5(P)—>5(C) is defined as usual

by itBciP) =q, where ££S(B) and the ath coordinate qa of q is pa,

a(EC. When B =A, tAc is abbreviated to ttc.

SB denotes the family of "cylinders" on the measurable subsets of

SiB), i.e., of sets ir£1(Z)=XX5(4-5) where X is a measurable

subset of SiB). The algebra of measurable sets modulo null sets of

SiB) will be written £(P), and that of SB (modulo null sets of SiA))

will be written EB. It is well known (but not completely trivial) that

■Kb induces a measure-preserving isomorphism, which we denote by

wB also, from EB to £(P).

3. Some lemmas.

Lemma 1. Let £i, £2 be the measure algebras of two a-finite measure

spaces Si, S2, and let £3 be the measure algebra of SiXS2. Then, given

automorphisms \j/i, \p2 of E\, E2, there is a unique automorphism fa of

£3 such that

Mx Xy) = <Ai(x) X faiy)        (x £ £i, y £ E2).

The units ex, e2, of £i, £2, may be partitioned into disjoint elements

ain££i, a2n££2 (« = 1, 2, • • • ), of finite measure, such that when-

ever y^ain (* = 1, 2) we have (1/w) meas y^meas faiy)^=n meas y.

It is a routine matter to extend the correspondence

fa(x X y) = fa{x) X fa(y)        (x ^ aim, y g a2n)

1 This terminology differs from that in [l], where isomorphisms are required to

be measure-preserving.
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to an isomorphism between the ideals Amn and Bmn of £3, where Amn

consists of all elements ^aimXa2n and Bmn of all elements ^i(aim)

Y.ip2(a2n), and thence to extend \p3 to all of £3. The proof that ^3 has

the stated property, and of its uniqueness, presents no difficulty.

Lemma 2. Let <p be a set automorphism 0/ 5= IIP, and let T be a

1-1 mapping of S onto itself such that, for each finite set C of suffixes a,

and for each measurable set K of Sc, T(K)E<p{K-\ and T~J(K)

£</>_1 {K}. Then T is a point automorphism of S, and induces <p.

Let (B be the Borel field generated by all sets of the form K, i.e.,

by all cylinder sets which are based on measurable sets infinite prod-

ucts of Ia's. We recall that (S> generates 5 in the following sense:

(1) each measurable subset of 5 differs from some set in ® by a null

set, (2) each null subset of 5 is contained in some null set in ($>. Now

it is easy to see that the measurable subsets X of 5 which have the

property:

(3) T(X)E4>{X\    and    T-\X) E 4>~1{X},

form a Borel field. Hence every set in (& has this property. From (2)

it follows that T(X) and T~l(X) are null whenever X is null, and

hence (1) shows that every measurable X has the property. In par-

ticular, T(X) and T~l(X) are measurable if X is, so P is a point auto-

morphism of 5; and clearly T induces </>.

Definition. Let <p be a given automorphism of £. A set BEA will

be called "invariant" (under <p) if <p(EB)=EB. Restricted to EB, <p

will then be an automorphism of EB.

Lemma 3. Each countable set BEA is contained in some countable

subset B of A which is invariant.2

Let B0 = B, and take a countable basis o0m, m = l, 2, • ■ ■ , for EB°

(apply 7TJ}1 to a countable basis for E(B)). Consider the elements

<t>n(bom) (« = 0, +1, +2, • • • ). The properties (1) and (2) stated at

the beginning of the proof of Lemma 2, show that each of these

measure classes contains a set which is a cylinder on only countably

many coordinates; hence there is a countable set PiC-<4 such that

every cpn(bom) is in EBl. Take a countable basis bim, m = \, 2, • • • , for

EBl, and repeat the process, obtaining a countable set P2; and so on.

Then [)Bk (£ = 0,1, • ■ • ) is the countable invariant set required.

Lemma 4. Every set-automorphism of the unit interval can be induced

by a point-automorphism.

2 More generally, each BEA is contained in an invariant set BEA of cardinal

g max  (Xo,   \b\). It can be shown that, given B (^0), there is a smallest B.
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Let ep be a set-automorphism of the unit interval I, and for each

/£/ let It denote the interval from 0 to t. The mapping U defined by

Uit) = meas<p {P} is a point-automorphism of I, and induces a set-

automorphism fa Since U maps It onto the interval from 0 to Uit),

we have measi/'jp} = meas <p {p} for each /£/; it follows that \pix)

and <p(x) have the same measure for each class x in the measure alge-

bra of I. Thus f"1^ is a measure-preserving set-automorphism of I, and

[2] there is a point-automorphism V of / which induces 4*~l<p. Then

UV is a point-automorphism of 7 which induces 0.

Lemma 5. Let S= HP,, a£yl, and let B be any subset of A for which
A—B is countable. Suppose <p is a set-automorphism of S which, re-

stricted to EB, is the identity mapping of EB. Then there exists a point-

automorphism T of S which induces <p, and which satisfies tvbT = -kb.

Note that the hypothesis on <p implies that B is invariant.

Write C = A —B; by Lemma 3, CCC£.4 where C is countable and

invariant. Writing D = C — C, we have DQB. Now, since </>(£*0 ~E^,

<p induces an automorphism <p1 = irc(pTrcT on £(C). And, because C is

countable, SiC) is isomorphic, under a measure-preserving point-

isomorphism, to I. Hence, by Lemma 4, there exists a point-auto-

morphism Pi of 5(C) which induces <pi.

Suppose first that D^0. Then we can regard SiC) as 5(D) X5(C),

and have (because <p is the identity on EB)

<p(e(A - C) X x X eiC)) = [e(A - C) X x] X e(C) for each x £ E(D),

eiA—C) and e(C) denoting the unit elements of EiA—C), EiC).

Hence cpi(xXe(C)) = 71^x5x(xXe(C)) =xXe(C) for each x££(P).

Thus, for each measurable subset X of 5(D), T^XXSiQ) differs

from X X SiC) by a null set. Apply this to the sets T\iXn)

ii — 0, +1, ■ • ■ , « = 1, 2, • • • ) in turn, where X\, X2, ■ ■ ■ , forms

a separating sequence of measurable sets in SiD); we obtain count-

ably many null sets with union N, say. Then N is null, Pi(7V) = N

= Pr1(^), and

Ti[iXn X SiC)) - N] = (Xn X SiC)) - N (« = 1, 2, • ■ • )•

Define a transformation T2 on SiC) by:

T*(p) = Tiip) iipe SiC) - N;       T2ip) = piipGN.

Clearly P2 is another point-automorphism of S(C) which also induces

<pi; and we now have

T2iXn X SiC)) = Xn X SiC)        in = 1, 2, • ■ • ).

As Xi, X2, • • • , is a separating sequence, it follows that
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T,(p X S(Q) = p X S(C) (p E S(D)),

and hence that

T2(X X S(C)) = X X 5(C)       for every X C 5(P).

Finally we define T by

T(p X q) = p X T2(q)    where   ^G5(i- C)    and    qEC.

Then T is clearly a point-automorphism of S, and it is easily seen

that ■kbT = wb. To show that T induces <p, it is enough to prove

(by a double application of Lemma 1) that if XExEE(A—C),

YEyEE(D), ZEzEE(C), then T(XX YXZ)E(p(xXyXz), and this
can be done by a straightforward calculation.

If D=0, we define T2= Ti on S(C) = S(C), and define Pas before;

only minor (simplifying) adjustments are needed in the argument.

Lemma 6. Let S= YLl<*i aEA, and let B be any subset of A for which

A—B is countable. Suppose <p is a set-automorphism of S, and that B is

invariant under <b, so that <p restricted to EB induces an automorphism

<p' of E(B). Then, given any point-automorphism T' of S(B) which

induces <p', there exists a point-automorphism T of S which induces <p,

and which satisfies tbT = T'ttb.

Lemma 5 is the special case when T' = identity, and we reduce the

general case to the special one. By Lemma 1, there exists an auto-

morphism \p of £ such that

i(x X y) = 4>'(x) Xy, xE E(B), y E E(A - B).

Then 6=<p\p~1 is also an automorphism of £; and, using the fact that

<p' ̂ ttbcpttb1, it is easy to see that 9 is the identity mapping on EB.

By Lemma 5, there exists a point-automorphism T* of 5 which in-

duces 6 on £, and which satisfies ttbT* =ttb- Define

T(p X q) = T*(T'(p) Xq), pE S(B), qES(A-B).

Then T is clearly a point-automorphism of S, and it is a straight-

forward matter to verify that T has the desired properties.

4. Theorem. Let S= HP, aEA, and let (j> be a set-automorphism

of S. Then there exists a point-automorphism T of S which induces <p.

Consider the family of ordered pairs (B\, T\) where (i) B\ is a

subset of A which is invariant under <p, (ii) T\ is a point-automor-

phism of S(Bx), and (iii) the automorphisms of E(B\) induced by <p

restricted to EB* (i.e., irBx4>irB\), and by Px, are the same. Say that

(Bx, Tx)<(Blt, T») provided that BxC-Bm and tt^P^ = 7\irMx on 5(PM).
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Here 7rMx is used as an abbreviation for vb Bx\ similarly we shall ab-

breviate tvb\ to w\. The partial ordering so defined is clearly transitive.

Further, every linearly ordered subfamily {(P„, P„), ju£Af} has an

upper bound in the family. To see this, define P'=UP„; this is an

invariant subset of A (under <p). Given ££5(P') and a£P', pick

any B,/3a, and let qa be the ath coordinate of T^ivPip)). It is easy

to see that q„ is independent of the choice of p., and we define T'ip)

to be the point of 5(P') having ath coordinate qa (a£P')- A straight-

forward calculation, using Lemma 2, shows that (P', T') is a member

of our family, and that (P>„, P„) <(£.', T) for each n£.M.

By Zorn's lemma, it follows that there is a maximal member (P, T)

of the family (note that the family is not vacuous, from Lemmas 3

and 4). It is enough to prove that B=A, for condition (iii) above

then shows that T induces <p. Suppose not, and pick aEA—B; by

Lemma 3 there is a countable set D£^4, invariant under <p, which

contains a. Let B*=B\JD; then B* is also invariant, and (p*

= irB*(p7rP*_1 is an automorphism of 5*=5(P*). We apply Lemma 6

to the product space 5*, with invariant subset B, set-automorphism

</>* and point-automorphism T, obtaining a point-automorphism T*

of 5* which induces <p* and satisfies tb*bT* = Ttb*b. But now

(B*, T*) is a member of the family defined above, and it contradicts

the maximality of (P, T), since (P, T)<iB*, T*) and P^P*. This

contradiction establishes the theorem.
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