AUTOMORPHISMS OF PRODUCTS OF MEASURE SPACES
DOROTHY MAHARAM

1. Introduction. Let .S be the measure-theoretic product of a (not
necessarily countable) family of unit intervals, S= [[I., aE4. In
this paper we shall prove that S has the following “realization” prop-
erty: every “set automorphism” ¢ of S may be induced by some
“point automorphism” T of S. (For the terms used, see below.) The
particular case of this theorem in which ¢ is measure-preserving
shows that S has “sufficiently many measure-preserving transforma-
tions” in the terminology of Halmos and von Neumann [1, p. 340].

When the number of factors I, is countable, this theorem reduces,
in the measure-preserving case at least, to a known property of nor-
mal measure spaces [2, p. 582]. The method of proof of the general
theorem will apply, more generally, to any product of measure spaces
in which (a) each factor has a separating sequence, and is of total
measure 1, (b) every sub-product of countably many factors has the
“realization” property itself. Thus, for example, any product of 2-
point factors (of measure 1) will also have the realization property.
We could even allow a finite number of the factors to have infinite
(but o-finite) measure, for the transformations considered need not
preserve measure. However, we shall restrict attention to the theorem
as first stated.

One feature needs remark. When the number of factors is counta-
ble, T is uniquely determined by ¢, in the sense that if 77 and T, are
point-automorphisms which induce the same set-automorphism ¢,
then 71 and T4 can differ on a null set at most. But when S= HIQ,
a& A, where 4 is uncountable, T is by no means unique in this sense.
For example, if 73 is the identity transformation on S and 7% the
transformation which interchanges the coordinate values 0 and 1
wherever they occur, then 77 and T, both induce the identity set-
automorphism. But the set on which T} and T differ can be shown to
be nonmeasurable, having outer measure 1 and inner measure 0.

2. Notation. Let .S be any measure space, and E its algebra of
measurable sets modulo null sets. Thus if X is a measurable subset of
S, its class modulo null sets, denoted by { X'} or x, is a typical member
of I£. If S’ is another measure space, with E’ as its measure algebra,
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a point isomorphism' T from S to S’ is a 1-1 mapping of S onto S’
such that both T and 7! take (i) measurable sets into measurable
sets, (ii) null sets into null sets. (In the cases we are mainly concerned
with, (ii) is a consequence of (i).) A set isomorphism! ¢ from S toS’
is simply an isomorphism from E to E’, that is, a 1-1 mapping of E
onto E’ which preserves suprema and complements, but not necessar-
ily measure. Thus every T induces a ¢ by the rule ¢(x) = { T(X)},
X&x. When S=8" and E=E’ we speak of point and set automor-
phisms.

Throughout what follows, we assume S= [[I., «EA, where each
I, is a unit interval of real numbers. For each nonempty BCA4, we
write S(B) for the partial product []7., «EB, using S(B) to denote
both the product set and the measure space on it. For simplicity of
notation, we also disregard the order of the factors, writing e.g.
S=S5(4)=S(B)XS(4—B). & is used for the empty set, and we as-
sume throughout that 4 = .

If CCBCA, the “projection” wpc¢: S(B)—S(C) is defined as usual
by mpc(p) =¢, where pES(B) and the ath coordinate ¢, of g is pa,
a&C. When B=A, w4 is abbreviated to m¢.

SB denotes the family of “cylinders” on the measurable subsets of
S(B), i.e., of sets m13'(X) =X XS(4 —B) where X is a measurable
subset of S(B). The algebra of measurable sets modulo null sets of
S(B) will be written E(B), and that of SB (modulo null sets of S(4))
will be written EB. It is well known (but not completely trivial) that
mp induces a measure-preserving isomorphism, which we denote by
mp also, from EB to E(B).

3. Some lemmas.

LEMMA 1. Let E,, E, be the measure algebras of two o-finite measure
spaces S1, S, and let E; be the measure algebra of SiXS:. Then, given
automorphisms Y, Y2 of E., E,, there is a unique automorphism Y5 of
E; such that

Ya(x X ) = i(x) X ¢a() (x € E1, y € Ey).

The units ey, e, of E,, E,, may be partitioned into disjoint elements
1. € E,, 2. €EE;, (n=1, 2, - - -), of finite measure, such that when-
ever y=<ai, (1=1, 2) we have (1/n) meas y <meas ¥;(y) Sn meas y.
It is a routine matter to extend the correspondence

Yax X 9) = ¥1(2) X ¥2(y) (& S a1m, ¥ S a2)
! This terminology differs from that in [1], where isomorphisms are required to
be measure-preserving.
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to an isomorphism between the ideals 4, and B, of E3;, where A,
consists of all elements Za1,Xas, and B, of all elements Sy (a1m)
Xa(as.), and thence to extend ¥ to all of E;. The proof that y; has
the stated property, and of its uniqueness, presents no difficulty.

LEMMA 2. Let ¢ be a set automorphism of S= [[I., and let T be a
1-1 mapping of S onto itself such that, for each finite set C of suffixes o,
and for each measurable set K of S°¢, T(K)E¢{K} and T-'(K)
E¢‘1{K } Then T is a point automorphism of S, and induces ¢.

Let ® be the Borel field generated by all sets of the form K, i.e.,
by all cylinder sets which are based on measurable sets in finite prod-
ucts of I,’s. We recall that ® generates S in the following sense:
(1) each measurable subset of S differs from some set in & by a null
set, (2) each null subset of S is contained in some null set in ®. Now
it is easy to see that the measurable subsets X of .S which have the
property:

A3) T(X) € ¢{X} and T-Y(X) € ¢'{X},

form a Borel field. Hence every set in ® has this property. From (2)
it follows that T(X) and T-}(X) are null whenever X is null, and
hence (1) shows that every measurable X has the property. In par-
ticular, T(X) and T-1(X) are measurable if X is, so T is a point auto-
morphism of S; and clearly T induces ¢.

DEFINITION. Let ¢ be a given automorphism of E. A set BC4 will
be called “invariant” (under ¢) if ¢p(EB)=EB. Restricted to EB, ¢
will then be an automorphism of EZ,

LEMMA 3. Each countable set BC A is contained in some countable
subset B of A which is invariant.?

Let By=B, and take a countable basis by, m=1, 2, - - -, for EB
(apply 7' to a countable basis for E(B)). Consider the elements
¢"(bom) (n=0, +1, +2, - - - ). The properties (1) and (2) stated at
the beginning of the proof of Lemma 2, show that each of these
measure classes contains a set which is a cylinder on only countably
many coordinates; hence there is a countable set B;CA such that
every ¢"(bon) is in EB', Take a countable basis by, m=1, 2, - - -, for
EB:, and repeat the process, obtaining a countable set B,; and so on.
Then UB, (=0, 1, - - - ) is the countable invariant set required.

LEMMA 4. Every set-automorphism of the unit interval can be induced
by a point-automorphism.

2 More generally, each BC A4 is contained in an invariant set ECA of cardinal
< max (No, |Bl). It can be shown that, given B (%), there is a smallest B.
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Let ¢ be a set-automorphism of the unit interval I, and for each
t&1 let I, denote the interval from 0 to ¢. The mapping U defined by
U(t) =meas ¢{I,} is a point-automorphism of I, and induces a set-
automorphism . Since U maps I, onto the interval from 0 to U(¢),
we have measgb{ I;} =meas ¢{I,} for each tE&1; it follows that ¢ (x)
and ¢(x) have the same measure for each class x in the measure alge-
bra of I. Thus Y ~1¢ is a measure-preserving set-automorphism of I, and
[2] there is a point-automorphism V of I which induces ¥—'¢. Then
UV is a point-automorphism of I which induces ¢.

LemMA 5. Let S= [[1., « €A, and let B be any subset of A for which
A — B is countable. Suppose ¢ is a set-automorphism of S which, re-
stricted to EB, is the identity mapping of EB. Then there exists a point-
automorphism T of S which induces ¢, and which satisfies TsT =mp.

Note that the hypothesis on ¢ implies that B is invariant.

Write C=4 —B; by Lemma 3, CCCCA where C is countable and
invariant. Writing D =C—C, we have DCB. Now, since ¢(EC) = EC,
¢ induces an automorphism ¢, =ngpng " on E(C). And, because C is
countable, S(C) is isomorphic, under a measure-preserving point-
isomorphism, to I. Hence, by Lemma 4, there exists a point-auto-
morphism T3 of S(C) which induces ¢,.

Suppose first that D7 &. Then we can regard S(C) as S(D) X S(C),
and have (because ¢ is the identity on EB)

¢p(e(4 — C) X x X ¢(C)) = [e(4 — C) X x] X &(C) for each x € E(D),

¢(A4—C) and ¢(C) denoting the unit elements of E(4 —C), E(C).
Hence ¢:(xXe(C)) =mgpr3 (xXe(C)) =xXe(C) for each xEE(D).
Thus, for each measurable subset X of S(D), T1(XXS(C)) differs
from X X S(C) by a null set. Apply this to the sets T¥X,)
(¢=0, £1,- -+, n=1,2,-- ) in turn, where X;, X,, - - -, forms
a separating sequence of measurable sets in S(D); we obtain count-
ably many null sets with union N, say. Then N is null, Ty (N)=N
=T7Y(N), and

T[(X. X S(C)) — N] = (Xa X S(C)) — N (n=1,2,---).
Define a transformation T; on S(C) by:
Top) = Ti(p) it p ES(C) — N;  Tulp) = pif p € N.

Clearly T is another point-automorphism of S(C) which also induces
¢1; and we now have

To(Xa X S([C) =X, XSC) (m=1,2,--.).

As X, Xs, - - -, is a separating sequence, it follows that
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To(p X S(C)) = p X S(C) (» € S(D)),
and hence that
To(X X S(C)) = X X S(C) forevery X C S(D).
Finally we define T by
T(p X q) = p X To(g) where p&S(A4 —C) and ¢&EC.

Then T is clearly a point-automorphism of S, and it is easily seen
that mpT =wp. To show that T induces ¢, it is enough to prove
(by a double application of Lemma 1) that if X&x&E(4—-0),
YEYyEE(D), ZE2E€E(C), then T(X X Y XZ)E@(x Xy Xz), and this
can be done by a straightforward calculation.

If D=, we define To=T; on S(C) =S(C), and define T as before;
only minor (simplifying) adjustments are needed in the argument.

LEMMA 6. Let S= [[I., €A, and let B be any subset of A for which
A — B is countable. Suppose ¢ is a set-automorphism of S, and that B is
invariant under ¢, so that ¢ restricted to EB induces an automorphism
¢’ of E(B). Then, given any point-automorphism T’ of S(B) which
induces @', there exists a point-automorphism T of S which induces ¢,
and which satisfies wgT =T'mp.

Lemma 5 is the special case when T’ =identity, and we reduce the
general case to the special one. By Lemma 1, there exists an auto-
morphism ¢ of E such that

¥(x X y) = ¢'(x) Xy, x € E(B), y € E(4 — B).

Then 8 =¢y! is also an automorphism of E; and, using the fact that
¢’ =mppmyt, it is easy to see that 6 is the identity mapping on EB.
By Lemma 5, there exists a point-automorphism T* of S which in-
duces 8 on E, and which satisfies mpT* =mp. Define

T(p X 9 = TT'(p) X @), p» € S(B), g€ S(4 — B).

Then T is clearly a point-automorphism of S, and it is a straight-
forward matter to verify that T has the desired properties.

4, THEOREM. Let S= HL., aEA, and let ¢ be a set-automorphism
of S. Then there exists a point-automorphism T of S which induces ¢.

Consider the family of ordered pairs (Bx, T») where (i) Bx is a
subset of A which is invariant under ¢, (ii) 7> is a point-automor-
phism of S(B,), and (iii) the automorphisms of E(B,) induced by ¢
restricted to EB (i.e., @7 ), and by T, are the same. Say that
(By, T)) <(B,, T,) provided that BACB, and maT,= Tma on S(B,).
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Here m, is used as an abbreviation for TB,By; similarly we shall ab-
breviate 75, to m\. The partial ordering so defined is clearly transitive.
Further, every linearly ordered subfamily {(B,., T, nEM } has an
upper bound in the family. To see this, define B’=UB,; this is an
invariant subset of 4 (under ¢). Given pE.S(B’) and a&B’, pick
any B,Da, and let ¢, be the ath coordinate of T,.(m.(p)). It is easy
to see that ¢, is independent of the choice of u, and we define T7(p)
to be the point of S(B’) having ath coordinate ¢, (¢ EB’). A straight-
forward calculation, using Lemma 2, shows that (B’, T”) is a member
of our family, and that (B,, T,) <(B’, T’) for each u&€ M.

By Zorn's lemma, it follows that there is a maximal member (B, T)
of the family (note that the family is not vacuous, from Lemmas 3
and 4). It is enough to prove that B=A4, for condition (iii) above
then shows that T induces ¢. Suppose not, and pick a &4 —B; by
Lemma 3 there is a countable set DCA, invariant under ¢, which
contains «. Let B*=B\UD; then B* is also invariant, and ¢*
=mpxdwB*~! is an automorphism of S* =S(B*). We apply Lemma 6
to the product space S*, with invariant subset B, set-automorphism
¢* and point-automorphism 7', obtaining a point-automorphism 7T°*
of S* which induces ¢* and satisfies wpxpT*=Tmp*z. But now
(B*, T*) is a member of the family defined above, and it contradicts
the maximality of (B, T), since (B, T)<(B*, T*) and B B*. This
contradiction establishes the theorem.
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