AN INVARIANT PROPERTY OF CESARI'S SURFACE INTEGRAL¹

L. H. TURNER

1. Introduction. Let $A \subset E_2$ be any admissible set. (See [2] for all definitions and theorems stated here without proof.) Let T be a continuous mapping of A into E_3 , p = T(w), $p = (x, y, z) \in E_3$, $w = (u, v) \in E_2$. We will call S = (T, A) a c.BV surface or mapping (continuous and of bounded variation) if the area V(T, A) of the mapping is finite. Let τ_1 , τ_2 , τ_3 be the orthogonal projections of E_3 onto the oriented (y, z) plane E_{21} , (z, x) plane E_{22} , (x, y) plane E_{23} , respectively. If (T, A) is a c.BV mapping, then the plane mappings $(T_r, A) = (\tau_r T, A)$ have variations (or areas) $V(T_r, A)$ which are all finite. Each of these variations is equal to the sum of a positive and a negative variation, $V(T_r, A) = V^+(T_r, A) + V^-(T_r, A)$. A relative variation is also defined by $\mathfrak{V}(T_r, A) = V^+(T_r, A) - V^-(T_r, A)$.

In this paper, given a c.BV surface (T, A), the symbol \mathfrak{S} will always stand for a finite set of nonoverlapping simple polygonal regions $\pi \subset A$. Also \sum_{π} will denote a sum over all polygons $\pi \in \mathfrak{S}$; \sum_{r} will stand for a sum over r = 1, 2, 3. For any point or vector $d = (d_1, d_2, d_3) \in E_3$ we use $||d|| = (d_1^2 + d_2^2 + d_3^2)^{1/2}$.

Now let \mathfrak{S} be any set of polygons π for a c.BV mapping (T, A). Let π^* denote the oriented boundary of π . Then T_r maps π^* into a oriented closed curve $C_{\pi r}$ in E_{2r} . For any point $p \in E_{2r}$, let $O(p; C_{\pi r})$ be the topological index of p with respect to $C_{\pi r}$. Then $O(p; C_{\pi r})$ is Borel measurable and integrable over E_{2r} . Define $O^+ = (|O| + O)/2$, $O^- = (|O| - O)/2$, and

$$v^{+}(\pi, T_{r}) = (E_{2r}) \int O^{+}(p; C_{\pi r}), v^{-}(\pi, T_{r}) = (E_{2r}) \int O^{-}(p; C_{\pi r}),$$

$$u(\pi, T_{r}) = v^{+} - v^{-}, v(\pi, T_{r}) = v^{+} + v^{-}, d_{\pi} = (u(\pi, T_{1}), u(\pi, T_{2}), u(\pi, T_{3})).$$

Now for every set $\mathfrak S$ we define three nonnegative indices d, m, μ , as in [2], by $d = \max\{\text{diam } T(\pi): \pi \in \mathfrak S\}; m = \max\{\left|T_r(\sum_{\pi} \pi^*)\right|: r = 1, 2, 3\}$, where the absolute value sign denotes two dimensional

Received by the editors May 24, 1958.

¹ This research was supported by Air Research and Development Command, Contract No. AF 18(600)-1484.

Lebesgue measure; $\mu = \max \{ V(T, A) - \sum_{\pi} \|d_{\pi}\|, V(T_r, A) - \sum_{\pi} |u(\pi, T_r)| : r = 1, 2, 3 \}.$

Now let $f(p, d) = f(x, y, z, d_1, d_2, d_3)$ be a continuous function of (p, d), p in some set $K \subset E_3$ and d any point of E_3 . We will call f(p, d) a parametric integrand if f(p, d) is positively homogeneous in d; i.e., $f(p, \alpha d) = \alpha f(p, d)$ for all $p \in K$, $\alpha \ge 0$, $d \in E_3$.

In [1] and [2, Appendix B], L. Cesari defined his surface integral and proved its existence as in the following theorem:

THEOREM 1. Let (T, A) be a c.BV surface. Let f(p, d) be a parametric integrand defined on $K \times E_3$ such that $T(A) \subset K$ and f(p, d) is bounded and uniformly continuous on $R = \{(p, d): p \in T(A), ||d|| = 1\}$. Then the limit $I(T, A; f) = \lim_{\pi} \sum_{\pi} f(p_{\pi}, d_{\pi})$ exists, where p_{π} is any point of $T(\pi)$, where π is an element of a set \mathfrak{S} , and the limit is taken as the indices d, m, μ of sets \mathfrak{S} tend to zero.

Let $\mathcal{V}_{\pi} = (\mathcal{V}(T_1, \pi), \mathcal{V}(T_2, \pi), \mathcal{V}(T_3, \pi))$ for any polygon of a set \mathfrak{S} . We will also use $\mathcal{V}(T, A) = (\mathcal{V}(T_1, A), \mathcal{V}(T_2, A), \mathcal{V}(T_3, A))$. The purpose of the present paper is to prove the following three theorems:

THEOREM 2. Under the same hypotheses as in Theorem 1, $\lim \sum_{\pi} f(p_{\pi}, \mathcal{V}_{\pi})$ exists, the limit being taken as in Theorem 1, and this limit equals I(T, A; f).

THEOREM 3. Let (T, A) be any c.BV mapping. Let (α_{ij}) be the matrix of a linear orthogonal transformation α of E_3 onto itself. Let (T', A) be the mapping defined by $T' = \alpha T$ and let $T'_r = \tau_r T'$. Then $\mathfrak{V}(T', A) = \alpha \mathfrak{V}(T, A)$.

THEOREM 4. Let (T, A) be a c.BV surface. Let f(p, d) be a parametric integrand defined on $K \times E_3$ with $T(A) \subset K$. Let f(p, d) be bounded and uniformly continuous on $R = \{(p, d) : p \in T(A), ||d|| = 1\}$. Let α be a linear orthogonal transformation of E_3 onto itself. Let $g(p,d) = f(\alpha^{-1}p, \alpha^{-1}d)$ on $(\alpha K) \times E_3$ and let $(T', A) = (\alpha T, A)$. Then I(T', A; g) exists and equals I(T, A; f).

The integral I(T, A; f) has been used in the calculus of variations by A. G. Sigalov, J. M. Danskin, J. Cecconi, and V. E. Bononcini.

2. The proof of Theorem 2. We first prove the following lemma.

LEMMA. Let (T, A) be any c.BV surface. Let $\mathfrak S$ be any set of polygons $\pi \subset A$ with index μ . Then $\sum_{\pi} |\mathfrak V(T_r, \pi) - u(\pi, T_r)| \leq \mu$, r = 1, 2, 3 and $\sum_{\pi} ||\mathfrak V_{\pi}|| - ||d_{\pi}|| || \leq \sum_{\pi} ||\mathfrak V_{\pi} - d_{\pi}|| \leq 3\mu$.

Proof.

$$\sum_{\pi} | \mathfrak{V}(T_{r}, \pi) - u(\pi, T_{r}) |
= \sum_{\pi} | V^{+}(T_{r}, \pi) - V^{-}(T_{r}, \pi) - v^{+}(\pi, T_{r}) + v^{-}(\pi, T_{r}) |
\leq \sum_{\pi} | V^{+}(T_{r}, \pi) - v^{+}(\pi, T_{r}) | + \sum_{\pi} | V^{-}(T_{r}, \pi) - v^{-}(\pi, T_{r}) |
= \sum_{\pi} [V^{+}(T_{r}, \pi) - v^{+}(\pi, T_{r})] + \sum_{\pi} [V^{-}(T_{r}, \pi) = v^{-}(\pi, T_{r})]
= \sum_{\pi} [V(T_{r}, \pi) - v(\pi, T_{r})] \leq V(T_{r}, A) - \sum_{\pi} | u(\pi, T_{r}) | \leq \mu,$$

where we have used the overadditivity of the area function V. Also $\sum_{\pi} |\| \mathbf{v}_{\pi} \| - \| d_{\pi} \| \| \le \sum_{\pi} \| \mathbf{v}_{\pi} - d_{\pi} \| \le \sum_{\pi} \sum_{r} |\mathbf{v}(T_{r}, \pi) - u(\pi, T_{r})| \le 3\mu$.

Proof of Theorem 2. Let M be a constant,

$$M \ge \sup \{ |f(p,d)| : (p,d) \in R \}, \qquad M \ge V(T,A).$$

Given $\epsilon > 0$, let $\rho > 0$ be such that $\rho < 1$ and $|f(p, d) - f(p, d^*)| < \epsilon/17M$ when (p,d), $(p,d^*) \in R$, $||d-d^*|| < \rho$. Let $\sigma > 0$ be such that $|I(T,A;f) - \sum_{\pi} f(p_{\pi},d_{\pi})| < \epsilon/17$ when \mathfrak{S} has indices $d,m,\mu < \sigma$. Let $\lambda = \min(\sigma,\rho,\epsilon\rho/17M)$ and let \mathfrak{S} be any set of polygons with indices $d,m,\mu < \lambda$. Let \sum' denote a sum over all $\pi \in \mathfrak{S}$ for which

$$||d_{\pi}/||d_{\pi}|| - \mathfrak{V}_{\pi}/||\mathfrak{V}_{\pi}|| || < \rho,$$

 \sum'' denote a sum over all other $\pi \in \mathfrak{S}$. (Replace any $d_{\pi}/\|d_{\pi}\|$ by zero if $\|d_{\pi}\| = 0$. Similarly for \mathfrak{V}_{π} .) Then for p_{π} any point of $T(\pi)$,

$$\sum_{\pi} [f(p_{\pi}, d_{\pi}) - f(p_{\pi}, \mathfrak{V}_{\pi})] = \sum_{\pi} f(p_{\pi}, d_{\pi}) / ||d_{\pi}|| \cdot ||d_{\pi}|| - ||\mathfrak{V}_{\pi}|| \cdot ||d_{\pi}|| + (\sum_{\pi}' + \sum_{\pi}'') [f(p_{\pi}, d_{\pi}/||d_{\pi}||) - f(p_{\pi}, \mathfrak{V}_{\pi}/||\mathfrak{V}_{\pi}||)] ||\mathfrak{V}_{\pi}|| = s_{1} + s_{2} + s_{3}.$$

From the lemma, $|s_1| < 3M\lambda \le 3\epsilon/17$. Also

$$|s_2| \leq \sum' \{ |f(p_{\pi}, d_{\pi}/||d_{\pi}||) - f(p_{\pi}, \mathfrak{V}_{\pi}/||\mathfrak{V}_{\pi}||) | ||\mathfrak{V}_{\pi}|| \}$$

$$\leq (\epsilon/17M) \sum' ||\mathfrak{V}_{\pi}|| \leq \epsilon/17.$$

We have used the inequality $\|\mathfrak{V}_{\pi}\| \leq V(T, \pi)$ which follows from

$$\| \mathfrak{V}_{\pi} \| = \left\{ \sum_{r} \left[V^{+}(T_{r}, \pi) - V^{-}(T_{r}, \pi) \right]^{2} \right\}^{1/2} \leq \left\{ \sum_{r} V^{2}(T_{r}, \pi) \right\}^{1/2}$$

$$\leq V(T, \pi),$$

the last inequality being a fundamental inequality of surface area theory, [2, §18.10]. Using the lemma again,

$$\begin{split} \rho \sum_{\tau} \| ||\mathfrak{V}_{\pi}|| &\leq \sum_{\tau} \||\mathfrak{V}_{\pi}|| \|d_{\pi}/\|d_{\pi}\| - |\mathfrak{V}_{\pi}/\|\mathfrak{V}_{\pi}\| \| \leq \sum_{\pi} \||\mathfrak{V}_{\pi} - d_{\pi}\||\mathfrak{V}_{\pi}\|/\|d_{\pi}\| \| \\ &\leq \sum_{\pi} \left\{ \||\mathfrak{V}_{\pi} - d_{\pi}\| + ||1 - ||\mathfrak{V}_{\pi}||/\|d_{\pi}\| ||d_{\pi}|| \right\} \\ &\leq \sum_{\pi} \left\{ ||\mathfrak{V}_{\pi} - d_{\pi}|| + ||d_{\pi}|| - ||\mathfrak{V}_{\pi}|| || \right\} < 6\lambda \leq 6\epsilon\rho/17M. \end{split}$$

Thus $\sum'' ||\mathfrak{V}_{\pi}|| < 6\epsilon/17M$ and $|s_3| \le 2M \sum'' ||\mathfrak{V}_{\pi}|| < 12\epsilon/17$. Therefore $|I(T, A; f) - \sum_{\pi} f(p_{\pi}, \mathfrak{V}_{\pi})|$

$$\leq \left| I(T, A; f) - \sum_{\pi} f(p, d_{\pi}) \right| + \left| \sum_{\pi} \left[f(p_{\pi}, d_{\pi}) - f(p_{\pi}, \mathcal{V}_{\pi}) \right] \right|$$

$$< \epsilon/17 + \left| s_{1} \right| + \left| s_{2} \right| + \left| s_{3} \right| < \epsilon/17 + 3\epsilon/17 + \epsilon/17 + 12\epsilon/17 = \epsilon.$$

Thus $I(T, A; f) = \lim_{\pi} \sum_{\pi} f(p_{\pi}, v_{\pi})$ as stated.

Thus Cesari's integral may be defined as a limit of sums of the form given in Theorem 2. G. M. Ewing in [3] has defined a surface integral using essentially the sums of Theorem 2 for a particular class of mappings. However, every (Fréchet) surface of finite area has a representation of the type needed by Ewing by a theorem of Cesari [2, p. 544]. (See [2, Chapter IX] for the definition of Fréchet surface and a discussion of representation theory.)

3. The invariance of the integral under rotations. The proof of Theorem 4 is a simple application of Theorem 3, which says that the coordinates of the relative variation vector $\mathbb{U}(T, A)$ transform covariantly to the coordinates of points in E_3 . The vectors d_{π} used in Theorem 1 do not have this property in general and the definition of I(T, A; f) in Theorem 1 is not as suited to the proof of Theorem 4 as the expression for I(T, A; f) given in Theorem 2.

PROOF OF THEOREM 3. Suppose first that the domain A is a simple closed Jordan region and T maps A^* onto a rectifiable curve with representation x = x(t), y = y(t), z = z(t), $0 \le t \le 1$. Then from [2; p. 104, p. 203], we have $\mathfrak{V}(T_1,A) = (E_{21}) \int n(p;T_1,A) = (E_{21}) \int O(p;C_1) = 1/2 \oint_{C_1} (ydz - zdy)$ where $O(p, C_1)$ is the topological index of any point $p \in E_{21}$ with respect to the oriented closed curve $C_1 = T_1(A^*)$ and $n(p; T_1, A)$ is the relative multiplicity function of (T_1, A) . Similarly for $\mathfrak{V}(T_2, A)$, $\mathfrak{V}(T_3, A)$.

Now suppose A is a finitely connected closed Jordan region of connectivity ν , $A = J_0 - (J_1^0 + J_2^0 + \cdots + J_{\nu}^0)$, and T maps each boundary curve J_{λ}^* , $\lambda = 0$, 1, 2, \cdots , ν , onto a rectifiable curve C_{λ} with representation $x_{\lambda}(t)$, $y_{\lambda}(t)$, $z_{\lambda}(t)$, $0 \le t \le 1$. Then from the discussion above for simple regions and from $[2, \S 12.15]$ it follows that $\mathfrak{V}(T_1, A) = 1/2 \sum_{\lambda} \mathcal{J}(y_{\lambda} dz_{\lambda} - z_{\lambda} dy_{\lambda})$ and similarly for $\mathfrak{V}(T_2, A)$, $\mathfrak{V}(T_3, A)$. Now $\alpha T = T'$ maps J_{λ}^* onto an oriented rectifiable curve C_{λ}' and a representation of C_{λ}' is $\xi_{\lambda}(t) = \alpha_{11}x_{\lambda}(t) + \alpha_{12}y_{\lambda}(t) + \alpha_{13}z_{\lambda}(t)$, $\eta_{\lambda}(t) = \alpha_{21}x_{\lambda}(t) + \alpha_{22}y_{\lambda}(t) + \alpha_{23}z_{\lambda}(t)$, $\zeta_{\lambda}(t) = \alpha_{31}x_{\lambda}(t) + \alpha_{32}y_{\lambda}(t) + \alpha_{33}z_{\lambda}(t)$. As above, if $T_r' = \tau_r T'$ then $\mathfrak{V}(T_1', A) = 1/2 \sum_{\lambda} \mathcal{J}(\eta_{\lambda} d\zeta_{\lambda} - \zeta_{\lambda} d\eta_{\lambda})$. A simple calculation shows that $\mathcal{J}(\eta_{\lambda} d\zeta_{\lambda} - \zeta_{\lambda} d\eta_{\lambda}) = \alpha_{11} \mathcal{J}(y_{\lambda} dz_{\lambda} - z_{\lambda} dy_{\lambda}) + \alpha_{12} \mathcal{J}(z_{\lambda} dx_{\lambda} - x_{\lambda} dz_{\lambda}) + \alpha_{13} \mathcal{J}(x_{\lambda} dy_{\lambda} - y_{\lambda} dx_{\lambda})$. Thus $\mathfrak{V}(T_1', A) = \alpha_{11} \mathfrak{V}(T_1, A) + \alpha_{12} \mathfrak{V}(T_2, A) + \alpha_{13} \mathfrak{V}(T_3, A)$. Similarly for $\mathfrak{V}(T_2', A)$, $\mathfrak{V}(T_3', A)$ and these relations may be combined as $\mathfrak{V}(T', A) = \alpha \mathfrak{V}(T, A)$.

From [2, §12.14], V^+ and V^- are additive on a finite union of disjoint closed admissible sets. Thus if $A = \sum R$ where the sets R are disjoint closed Jordan regions and (T, A) is a c.BV mapping such that T maps every boundary curve of the regions R into a rectifiable curve, then $\mathfrak{V}(T_r, A) = \sum_R \mathfrak{V}(T_r, R)$, $\mathfrak{V}(T_r', A) = \sum_R \mathfrak{V}(T_r', A)$, and $\mathfrak{V}(T', A) = \alpha \mathfrak{V}(T, A)$ since $\mathfrak{V}(T', R) = \alpha \mathfrak{V}(T, R)$ for every R by the discussion above.

Now let (T, A) be a c.BV mapping from an arbitrary admissible set A. We will define, as in [2], a figure F as a finite union of disjoint finitely connected polygonal regions. A continuous surface (T, F) is quasilinear if F can be decomposed into a finite set of nonoverlapping polygonal regions such that T is linear but not necessarily homogeneous on each of them. Also we say that a sequence of figures $\{F_n\}$ invades A if $F_n \subset A$, $F_n^0 \subset F_{n+1}^0$ for all n, and $\lim F_n^0 = A^0$. Now from [2, p. 37] there is a sequence $\{(T_n, F_n)\}$ of quasilinear mappings such that $\{F_n\}$ invades A, $\delta_n = \sup\{\|T_n(w) - T(w)\| : w \in F_n\}$ converges to zero, and $V(T_n, F_n)$ converges to V(T, A). As a consequence, $V(T_{nr}, F_n)$ converges to $V(T_r, A)$, [2, p. 393], and finally $V(T_{nr}, F_n)$ converges to $V(T_r, A)$, r = 1, 2, 3. This last statement is not explicitly stated in [2] but is implied by the statements

- (1) $V(T_r, A) = (E_{2r}) \int n(p; T_r, A), [2, p. 206];$ and
- (2) $\lim_{r \to \infty} (E_{2r}) \int |n(p; T_{nr}, F_n) n(p; T_r, A)| = 0$, [2, p. 202], which are true under the hypotheses stated above.

The sequence $\{(T'_n, F_n)\} = \{(\alpha T_n, F_n)\}$ also has the properties that $\{F_n\}$ invades A, $\rho_n = \sup\{\|T'_n(w) - T'(w)\| : w \in F_n\} = \delta_n$ converges to zero, and $V(T'_n, F_n)$ converges to V(T', A). This last statement follows from the fact that area is invariant under rotations,

 $V(T_n', F_n) = V(T_n, F_n), V(T', A) = V(T, A), [2, p. 335].$ Thus from the reasoning above, $V(T'_{nr}, F_n)$ converges to $V(T'_r, A), r = 1, 2, 3$.

Then for every integer n, $\|\mathbb{U}(T',A) - \alpha\mathbb{U}(T,A)\| \leq \|\mathbb{U}(T',A) - \mathbb{U}(T',A)\| + \|\mathbb{U}(T',F_n) - \alpha\mathbb{U}(T_n,F_n)\| + \|\alpha[\mathbb{U}(T_n,F_n) - \mathbb{U}(T,A)]\|$. The first and third terms of this expression tend to zero as n tends to infinity. By the first part of our proof, the second term is zero for all n because the image of a boundary curve of a quasilinear mapping is always rectifiable. Thus $\mathbb{U}(T',A) = \alpha\mathbb{U}(T,A)$ as stated.

To prove Theorem 4, we will need the result from [2, p. 359], that under the hypotheses of Theorem 3, for every $\epsilon > 0$ there is a set \mathfrak{S} whose indices d, m, μ with respect to (T, A) and indices d', m', μ' with respect to (T', A) are all $<\epsilon$.

PROOF OF THEOREM 4. Evidently g(p,d) is uniformly continuous and bounded on $R' = \{(p,d) \colon p \in T'(A), \|d\| = 1\}$ and therefore I(T,A;f) and I(T',A;g) both exist by Theorem 1. Let $\{\mathfrak{S}_n\}$ be a sequence of sets of polygons whose indices d_n, m_n, μ_n and d_n', m_n', μ_n' tend to zero. If p_{π} is any point of $T(\pi), \pi \in \mathfrak{S}_n$, then $\sum_n f(p_{\pi}, \mathbb{V}_{\pi})$ converges to I(T,A;f) where \sum_n denotes a sum over all $\pi \in \mathfrak{S}_n$. Also $\sum_n g(\alpha p_{\pi}, \mathbb{V}_n')$ converges to I(T',A;g). But from Theorem 3, $\mathbb{V}_n' = \alpha \mathbb{V}_{\pi}$ and thus

$$\sum_{\mathbf{n}} g(\alpha p_{\pi}, \mathbf{U}_{\pi}') = \sum_{\mathbf{n}} g(\alpha p_{\pi}, \alpha \mathbf{U}_{\pi}) = \sum_{\mathbf{n}} f(\alpha^{-1} \alpha p_{\pi}, \alpha^{-1} \alpha \mathbf{U}_{\pi}) = \sum_{\mathbf{n}} f(p_{\pi}, \mathbf{U}_{\pi}).$$

Therefore I(T, A; f) = I(T', A; g).

BIBLIOGRAPHY

- 1. L. Cesari, La nozione di integrale sopra una superficie in forma parametrica, Ann. Scuola Norm. Sup. Pisa. (2) vol. 13 (1946).
 - 2. L. Cesari, Surface area, Princeton University Press, 1956.
- 3. G. M. Ewing, Surface integrals of the Weierstrass type, Duke Math. J. vol. 18 (1951).

PURDUE UNIVERSITY