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1. Introduction. Let ACE2 be any admissible set. (See [2] for all

definitions and theorems stated here without proof.) Let T be a con-

tinuous mapping of A into £3, p = T(w), p = (x, y, z)££3, w=(u, v)

EE2. We will call S=(T, A) a c.BV surface or mapping (continuous

and of bounded variation) if the area V(T, A) of the mapping is

finite. Let tx, t2, r3 be the orthogonal projections of £3 onto the

oriented (y, z) plane £21, (z, x) plane £22, (x, y) plane £23, respectively.

If (T, A) is a c.BV mapping, then the plane mappings (Tr, A)

= (ttT, A) have variations (or areas) V(Tr, A) which are all finite.

Each of these variations is equal to the sum of a positive and a nega-

tive variation, V(Tr, A) = V+(Tr, A) + V~(Tr, A). A relative varia-

tion is also defined by V(Tr, A) = V+(Tr, A) - V'(Tr, A).

In this paper, given a c.BV surface (T, A), the symbol © will al-

ways stand for a finite set of nonoverlapping simple polygonal re-

gions 7tC^4- Also 22* will denote a sum over all polygons 7r£©; ~^r

will stand for a sum over r = l, 2, 3. For any point or vector d

= (du dt, d,)EE3 we use \\d\\ = (d\+dl+d2y>2.
Now let © be any set of polygons it for a c.BV mapping (T, A).

Let 7r* denote the oriented boundary of ir. Then TT maps ir* into a

oriented closed curve C*r in £2,- For any point pEE2r, let 0(p; Cnr)

be the topological index of p with respect to Crr- Then 0(p; Crr) is

Borel measurable and integrable over £2,- Define 0+=(|0| +0)/2,

0- = (\0\ -0)/2, and

v+(v, TT) = (E2r) j 0+(p;C„r), v~(tt, Tr) = (E2r) J 0~(p; C„),

u(ir, Tr) =v+— tr, v(r, Tr) = v+ + v~, dr = (u(ir, Tx), u(ir, T2), u(r,Tz)).

Now for every set © we define three nonnegative indices d, m, p.,

as in [2], by d = max{diam T(ir): 7r£©} ; m = max{ | T,(^T ir*)\ : r

= 1, 2, 3}, where the absolute value sign denotes two dimensional
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Lebesgue measure; ;u = max {V(T, A) — 52* ||^»||> V(Tr, A) —

^\u(w, Tr)\ :r = l, 2, 3}.

Now let f(p, d) =f(x, y, z, di, d2, d3) he a continuous function of

(p, d), p in some set KCE3 and d any point of E3. We will call f(p, d)

a parametric integrand if f(p, d) is positively homogeneous in d; i.e.,

f(p, ad) =af(p, d) lor all pEK, a^O, dEE3.
In [l] and [2, Appendix B], L. Cesari defined his surface integral

and proved its existence as in the following theorem:

Theorem 1. Let (T, A) be a c.B V surface. Letf(p, d) be a parametric

integrand defined on KXE3 such that T(A)CK andf(p, d) is bounded

and uniformly continuous on R={(p, d): pET(A), ||<7||=l}. Then

the limit I(T, A; f) =lim 52»/ (P*> dT) exists, where pT is any point of

T(ir), where w is an element of a set @, and the limit is taken as the

indices d, m, p of sets © tend to zero.

Let V* = (V(Ti, it), V(T2, iv), V(T3, tt)) for any polygon of a set ©.

We will also use V(T, A) = (V(TU A), V(T2, A), V(T3, A)). The pur-

pose of the present paper is to prove the following three theorems:

Theorem 2. Under the same hypotheses as in Theorem 1,

lim z_,*f(p*, Vi) exists, the limit being taken as in Theorem 1, and

this limit equals I(T, A;/).

Theorem 3. Let (T, A) be any c.B V mapping. Let (an) be the matrix

of a linear orthogonal transformation a of E3 onto itself. Let (T', A) be

the mapping defined by T'=aT and let Ti=rrT'. Then V(T', A)

= aV(T,A).

Theorem 4. Let (T, A) be. a c.B V surface. Letf(p, d) be a parametric

integrand defined on KXE3 with T(A)EK. Letf(p, d) be bounded and

uniformly continuous on R= {(p, d): pET(A), \\d\\ = l}. Let a be a

linear orthogonal transformation of E3 onto itself. Let g(p,d)

=f(a~lp, arH) on (aK) XE3and let (T, A) = (aT, A). Then I(T, A ;g)
exists and equals I(T, A; /).

The integral I(T, A;f) has been used in the calculus of variations

by A. G. Sigalov, J. M. Danskin, J. Cecconi, and V. E. Bononcini.

2. The proof of Theorem 2. We first prove the following lemma.

Lemma. Let (T, A) be any c.B V surface. Let © be any set of polygons

tvCA with index p. Then 52* | °U(Tr, x) —u(ir, Tr) \ ^p, r = 1, 2, 3 and

52*1 ||v,|[ -|KII I ̂  XM|u.r-d,|| ^3/x.
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Proof.

E    I  V(Tr, T)   ~   U(T,   Tr) |

=   E   \V+(Tr, IT)   -   V~(Tr, IT)   -   V+(T,  Tr)   +  V~(t,  Tr)  |

=   E   I   V+(Tn TT)   -  V+(w, Tr)\    +   E   I  V~(Tr, t)   ~ V~(t, Tr) |
X X

= E [F+(rr, t) - t>+(x, rr)] + E [v-(rr> *-) = trfo r,)]
X IT

= E [F(rr, t) -»(», rr)] =g F(rr> ̂ t) - E I «(*■, rr) I ^ *»,
X TT

where we have used the overadditivity of the area function V. Also

E-IIMHKIII ̂L*ll,u»-<MI = L*Er|,u(rr,7r)-w(7r, rr)| ̂ 3/*.
Proof of Theorem 2. Let Af be a constant,

M^sup {\f(p,d)\: (p,d) ER},        M = V(T, A).

Given e > 0, let p>0 be such thatp<l and \f(p,d)-f(p,d*)\ <e/l7M

when (p,d), (p,d*)ER, \\d-d*\\<p. Let <r>0 be such that

| I(T, A;f) — ̂ ,/(^„ dr)\ <e/17 when © has indices d, m, p.<a. Let

X = min (a, p, ep/17M) and let © be any set of polygons with indices

d, m, /i<\. Let E' denote a sum over all 7r£© for which

||<*r/||<*,r|l - WlNI II < P,
~^2," denote a sum over all other i£@. (Replace any <2,/||<2,|| by zero

if ||<2xl| =0. Similarly for "Ox.) Then for pT any point of T(w),

E U(pT,dr) -f(P*,vr)] = E/(/>*,^)/lkll)lKII - IMIJ
IT IT

+ (E' + E'0[/(^,^k||)-/(£*, W|MI)11MI
= sx + s2 + s3.

From the lemma, |si| <3M\^3e/l7. Also

\si\   iZ'd f(P" d*A\dM) ~ f(P*, Vr/\\X)r\\) | ||Ux|| }
^ (e/l7M) E' IMI = «/17-

We have used the inequality ||t)x|| ^ F(£, ir) which follows from

Kll = { E [F+(rr, «■) - 7-(rr> x)]2| 2 = { E v2(Tr, T)|

= F(r, «■),
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the last inequality being a fundamental inequality of surface area

theory, [2, §18.10]. Using the lemma again,

p£" Kll = Z" IMI Ik/I Wl - WIMI || ̂  Z ||<o* - ^ll^ll/II^H ||
TT

^ E {||"o, - d,|| + 11 - IM/lkll 111^11}
TT

^ 12 {||13- - <k|| + I IWI - \\vr\\ | } < 6a :g 6ep/17M.

Thus ^"\\vr\\<6e/l7Mand \s»\ ^2Af52"[|l),r|| <12e/17. Therefore

\l(T,A;f)-Zf(P*,V«)\
IT

g   I(T,A;f) - Zf(P, dw)   +   52 \fipr, dr) - f(pr, Vr)}
IT IT

< e/17 + |ii|  + \s2\  + \ss\   < e/17 + 3e/17 + e/17 + 12e/17 = «.

Thus I(T,A;f) = lim J^Tf(pr, V*) as stated.

Thus Cesari's integral may be defined as a limit of sums of the form

given in Theorem 2. G. M. Ewing in [3] has defined a surface integral

using essentially the sums of Theorem 2 for a particular class of map-

pings. However, every (Frechet) surface of finite area has a represen-

tation of the type needed by Ewing by a theorem of Cesari [2, p. 544].

(See [2, Chapter IX] for the definition of Frechet surface and a dis-

cussion of representation theory.)

3. The invariance of the integral under rotations. The proof of

Theorem 4 is a simple application of Theorem 3, which says that the

coordinates of the relative variation vector *U(7", A) transform co-

variantly to the coordinates of points in E3. The vectors dT used in

Theorem 1 do not have this property in general and the definition of

I(T, A; f) in Theorem 1 is not as suited to the proof of Theorem 4

as the expression for I(T, A;/) given in Theorem 2.

Proof of Theorem 3. Suppose first that the domain A is a simple

closed Jordan region and T maps A* onto a rectifiable curve with

representation x = x(t), y=y(t), z = z(t), O^t^l. Then from [2; p. 104,

p. 203], we have V(TUA) = (E2i)Jn(p-,Ti, A) = (E2X)JO(p;Ci)

= l/2<fCl(ydz — zdy) where 0(p, G) is the topological index of any

point pEE2i with respect to the oriented closed curve Ci = T\(A*)

and n(p; 7\, A) is the relative multiplicity function of (Ti, A).

Similarly for V(T2, A), V(T3, A).
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Now suppose A is a finitely connected closed Jordan region of con-

nectivity v, A =J0 — (J^+J^+ • ■ • +J°V), and T maps each boundary

curve J*, X = 0, 1, 2, • • • , v, onto a rectifiable curve C\ with repre-

sentation x\(t), y\(t), z\(t), O^t^l. Then from the discussion above

for simple regions and from [2, §12.15] it follows that 15(77, A)

= l/2j^\f(yxdzi-zxdy>,) and similarly for V(T2, A), V(T3, A). Now

aT=T' maps /* onto an oriented rectifiable curve C{ and a repre-

sentation of C\ is £\(t)=auX\(t)+ai2y\(t)+aiSZx(t), v\(t) =a2iX\(t)

+a2ty\(t)+a23zx(t), fxW = ot3iX\(t) + a32yx(t) + a33zx(t). As above,

if r/=rrr then <0(7Y, 4) = l/2X)x.*Wrx-rx*?x). A simPle
calculation shows that f(v\d{\ — fx^x) = antf(yxdz\ - z^dy,,) +

autf(z),dx\ — xxdz\)+ai3f(xxdyx—y\dx),). Thus V(Ti ,A) =anV(Ti,A)

+ai2V(T2, A)+ai3V(T3, A). Similarly lor V(Ti, A), V(Ti, A) and

these relations may be combined as V(T', A) =aV(T, A).

From [2, §12.14], F+ and V~ are additive on a finite union of dis-

joint closed admissible sets. Thus if A = 52-^ where the sets 7? are

disjoint closed Jordan regions and (7", .4) is a c.BV mapping such

that T maps every boundary curve of the regions 7? into a rectifiable

curve, then 13(77 A) = £B V(Tr, R), 13(77, A) = 52« "0(77, A), and
V(T', A)=aV(T, A) since 13(77 R)=aV(T, R) lor every 7? by the

discussion above.

Now let (T, A) be a c.BV mapping from an arbitrary admissible

set A. We will define, as in [2], a figure F as a finite union of disjoint

finitely connected polygonal regions. A continuous surface (T, F) is

quasilinear if F can be decomposed into a finite set of nonoverlap-

ping polygonal regions such that T is linear but not necessarily homo-

geneous on each of them. Also we say that a sequence of figures {F„}

invades A if FnCA, KCFl+i for all n, and lim F% = A°. Now from

[2, p. 37] there is a sequence { (Tn, Fn)} of quasilinear mappings such

that {Fn} invades A, 5n = sup{||F„(w) — T(w)\\: wEFn} converges

to zero, and V(Tn, Fn) converges to V(T, A). As a consequence,

V(T„, Fn) converges to V(Tr, A), [2, p. 393], and finally V(Tnn Fn)

converges to V(Tr, A), r=l, 2, 3. This last statement is not explicitly

stated in [2 ] but is implied by the statements

(1) V(TT, A) = (E2r)fn(P; Tr, A), [2, p. 206]; and
(2) lim (E2r)J\n(p; Tnr, Fn)-n(p; Tr, A)\ =0, [2, p. 202], which

are true under the hypotheses stated above.

The sequence {(77, Fn)} = {(aTn, Fn)} also has the properties

that {F„} invades A, p„ = sup{||77 (w) — T'(w)\\: wEFn} =5„ con-

verges to zero, and V(T„ , Fn) converges to V(T', A). This last state-

ment follows from the fact that area is invariant under rotations,
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V(T:, Fn) = V(Tn, Fn), V(T', A) = V(T, A), [2, p. 335]. Thus from
the reasoning above, V(T^r, F„) converges to V(Ti, A), r = l, 2, 3.

Then   for   every   integer   n,   ||TJ(r',^) -aTJ(r,.4)|| g ||TJ(T',,4)

- 13(77, Fn)\\   +  11-0(77,  Fn)   -  aV(Tn, Fn)\\   +  \\a[v(Tn,  Fn)
— V(T, A)]\\. The first and third terms of this expression tend to

zero as n tends to infinity. By the first part of our proof, the second

term is zero for all n because the image of a boundary curve of a

quasilinear mapping is always rectifiable. Thus V(T', A) =aV(T, A)

as stated.

To prove Theorem 4, we will need the result from [2, p. 359], that

under the hypotheses of Theorem 3, for every e>0 there is a set ©

whose indices d, m, p. with respect to (T, A) and indices d', m', pf

with respect to (T', A) are all <e.

Proof of Theorem 4. Evidently g(p, d) is uniformly continuous

and bounded on £'= {(p,d): pET'(A), \\d\\=l} and therefore

I(T, A;f) and I(T', A; g) both exist by Theorem 1. Let {©„} be a

sequence of sets of polygons whose indices dn, m„, p,n and dn', ml, /*„'

tend to zero. If pT is any point of T(tr), irE©„, then ^,/(f„DT)

converges to I(T, A ;f) where E» denotes a sum over all 7r£@n. Also

E« g(aP*< V*) converges to I(T', A; g). But from Theorem 3,

TJx' =aVr and thus

E giotpr, "Ux) = T,g(ap*,aVr) = E/(a~V>r, a~laV«) = E/(/>*, f*)-
n n n n

Therefore i(£, A;f)=I(T',A;g).
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