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Let Sn be the sum of n independent, identically distributed,

integer-valued random variables. Chung and Erdos2 have shown that

for arbitrary integers a, a', b,

... T.    PrK-6 = a]
(1) Lim- = 1,

»-.« Pr[5„ = a'}

under one of two assumptions. They assume either that FJA} =0,

or that the mean diverges on both the positive and negative side.

E|X} denotes, as usual, the expectation—or mean—of the random

variable X.

Actually their result is easily extendable to lattice-valued random

variables, except that in the more general case a and a' must be re-

stricted to be suitable values of the sums, and b must be so chosen

and the limit taken over such a subsequence of n that the two

probabilities be positive. One convenient general class to treat is

the class of random variables whose values are multiples of a given

rational number r, and for which Sn for sufficiently large n may be

any multiple (or any nonnegative or any nonpositive multiple) of r.

Then b may be any integer, a and a' multiples of the given rational

number, and the limit is taken over sufficiently large n. We will

prove a considerable extension of (1). For convenience we will restrict

ourselves to rational valued random variables of the type indicated.

Let X take on the values a,- with probability pi. We number the

values in increasing order, indicating negative values with negative

subscripts. All unrestricted sums will be over the entire range of X.

The generating function f(s) = ^piSai is well defined in some interval

(si, St), and may or may not converge at the end-points. We will re-

strict the domain to positive numbers, and hence we always have

0fksifklfks2fk =°, though we may have the interval shrinking down

to the single point 1.

We define g(s) = sf (s)/f(s).  If Si<s2, then this function is well
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defined on the interior of the interval. Since g(l) = ^atpt, this may

be well defined (possibly + °°) even if si = s2 = L The only case in

which g is not defined is where the mean diverges on both sides. A

proof of our theorem for this case will be given separately. We will

show that g is monotone increasing in the interior of the interval.

g'(s) = [f'is)fis) + sf"is)fis) - sf'(s)2]/f(s)2

= 23 23 [piPiio-t - aia/)sa'   '   ]/fis)

= 1/2 E E [piPMi - aif sa'+,"-l]/fis)2 > 0.

Let us introduce the quantities ti = lim3^s,+ g(s) and 22 = lims<S2- g(s);

h may be — °° and t2 may be -f- °°. Then g maps (si, s2) one-one onto

ik, t2). We then define the function hit) as follows: If h<t<t2,

h(t)=g~1(t). If tSh, h(t)=tu and if f^t2, then h(t)=t2. The function

h is a mapping of all real numbers onto [si, s2}. If 5i = 52 = l, we let

h(t) = 1 for all t.

In the following theorem, and from here on, we will always assume

that a and a' are appropriate multiples of the rational number r, that

t is a multiple of r between inf (a/) and sup (c,-), and that limits are

carried out for large enough values of n that the probabilities be

positive. We do not assume the existence of any moments for X.

Theorem.3 For permissible a, a', t,

Tr[S„-b = nt + a]        h(t)"'-a
(2) Lim- = —;-r— •

«-«  Pr[5„ = nt + a']       E{h(t)x}b

Proof. Let us first consider the case h<t<t2. In this case h(t) = so

is in the domain of /, and hence

E{h(ty} =mt)) = c

is finite. Let us introduce the random variable A* which takes on the

value a,— / with probability p* = pisa0i/c. We have p,*>0and E^* = 1

by the definition of c.

E{X*} = (IA) E PisViai - t)

=   (1A)[50/'(J0)   -tfiSo)]

= (iA)/(jo)k(*o) -1].

But so = hit) and hence g(s0) = t. Thus E {X*} = 0. Thus we may apply

(1) to X*, and we obtain

3 The existence of these limits was conjectured by J. L. Snell and R. E. William-

son. The author is indebted to them for suggesting the problem, and for other valuable

suggestions. An analogous theorem for the case of a random variable with a con-

tinuous density function will be published by Snell and Williamson.
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(3) Lim Mst-h = a] = j

. ™ Pr[5* = a']

We obtain Pr[5* = a'] by choosing all paths in which the numbers

Wj (the number of times X* = ai — t) satisfy the conditions X)w> = w

and 53«i(a,- —*•) =a'. For each such path we have a probability H^*"*.

Thus the desired probability is the sum of all these products over the

chosen paths. But Tip?* = (so+a /cn) JlpT, where we made use of

both properties of the chosen paths. We now observe that for each

path 2\lni = n and ^,niai = nt+a', hence each is a path on which

Sn = nt+a', and each path has probability YLp"* Ior %- Hence we

obtain that

r    # 1 nt+a'      n r

Pr[S» = a'] = (so     /c ) Pr[S„ = nt + a'\

and similarly

r    * 1 nt+a     n—b r -,

Pr[5„_6 = a\ = (sq    /c    ) Pr[5„_6 = ni + a\.

Thus we may substitute into equation (3). We then note that the

factors multiplying the probabilities simplify, and we obtain

. 6     a>-a    Vr[Sn-b  =   nt +  a]
Lim (c Ao    )-= 1.
»->» Pr[5„ = nt + a')

From this we obtain our theorem by bringing the factor, which is

free of n, to the right side, and replacing so and c by the quantities

they stand for.

The cases tfkh and t^tt are quite similar; we will treat only the

latter. In this case we must proceed by a method of truncation. We

introduce the random variables Xn which take on the values Oj for

i^n with probabilities knpi- In other words, we cut off the high values

of X, and renormalize the probabilities by a suitable factor k„. The

original X is the limit of the Xn, and we will show that the limit (2)

may be obtained as the limit of the limits of the Xn.

Let us consider some Xn, with n sufficiently large so that t is per-

missible for it (that is t <an). Since Xn takes on only a finite number

of positive values, /„ will have a domain which contains (1, + «>).

Furthermore, E{Xn} is always well defined, though it may be — w.

As for any random variable having a well-defined mean, gH(l) is the

mean (or approaches this mean as 5—>1 from above or below if the

mean is — » or + °° respectively). As s—>=o , gn(s) tends to the larg-

est value an of Xn. Hence the range of gn includes all permissible

values of t above the mean.

We will assume that F{aJ  is well defined (though possibly in-
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finite). The case where the mean diverges on both sides will be

treated separately. Then g(l) is the mean. Our t^h^gil) is at least

equal to the mean. Obviously, E{X}>E{Xn}, hence t is greater

than the mean of A„, and hence it lies in the range of gn. Hence our

previously proven result is applicable to Xn. For the ratio in (2), as

applied to A„, we obtain the desired limit in terms of hn(t).

We will show below that hn(t)^h(t)=s2. We would like to take

this limiting h-value as the value in (2). For this we must estimate

the error between the ratio in (2) and si~a/E{sx }b. We can bind this

error by the sum of three terms, each of which can be shown to go to

0: (i) The difference between the ratio for A and for some A». This

will go to 0 for N(n) chosen sufficiently great, (ii) The difference be-

tween the ratio for Ajv and its limit. We need a bound on this that is

uniform in N. This may be obtained by a computation similar to that

in the Chung-Erdos paper, (iii) The difference between hn(t) and

52, which tends to 0 since the sequence converges to s2.

We must still prove that hn(t)—>s2. Since t is in the range of each gn,

we have gn(hn(t)) =t. We note that

n

E knpiaiS"i

gn(s)   =  —"-
n

E k„pisa<
—oo

In this ratio the normalizing factor cancels out. If s>s2 is outside

the domain of g, then both numerator and denominator will tend to

oo. Hence the positive tails will dominate. But in the tail the numer-

ator has terms arbitrarily larger than the corresponding terms in the

denominator, hence gn(s)—>0°. Let 5 be any number greater than s2.

Then for sufficiently large n we will have gnis) >t, and hence /?„(<) <s.

Thus for any e>0, all sufficiently high n yield hnit) <s2 + e. But we

also know that gis2)=t2<t. Thus E£»'(a; — t)sai<0. If an>t, then

the corresponding sum for A„ has some positive terms deleted and

hence is certainly negative. Hence gnis2)<t for sufficiejtly high n.

Hence hnit)>s2 for sufficiently high n. But then Kit)—»s2, as was to

be shown.

It is not immediately obvious that E{hit)x} =fis2) is finite in this

case. Indeed, in general /(s2) is not finite. However, in the present

case we know that gis2) =t2 is finite. If fis)—>°o as s-+s2, then we can

use the same argument that we used for g„ above to show that

g(s)—> °o , contrary to our assumption.

This leaves us only one case, where the mean diverges on both

sides. In this case Si = s2=l, and hence hit) = 1 for all t. We must
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show that in this case we always obtain the limit 1 in (2). But this

is a trivial consequence of (1). Let FJAJ diverge on both sides.

Then the same is true for X — t. If we apply (1) to X — t, using a+bt

in place of a, we obtain (2).

This completes the proof of our theorem.

It is worth pointing out that the above result is a genuine gener-

alization of the Chung-Erdos result. If the mean is not defined, then

we have h(t) = 1 for all t, and hence (1) is a special case of (2) in

which t = 0 is chosen. If the mean is some finite number to, then

g(l) =to, hence h(to) = 1, and we obtain limit 1 for t = t0. The mean 0

case in (1) is a special case of this fact.

Let us illustrate the theorem by means of some examples. If X

takes on only a finite number of values, then/ has domain (— <x>, + oo).

The range of g over (0, oo) will be (h, t2) where h is the smallest and

h the largest value of X. Hence h(t)=g~1(t) for all permissible t.

Hence h(t) is strictly monotone increasing in t. This means that for

b = 0, a = 0, a' = l the limit h(t) is strictly increasing; while for 6 = 1,

a = a' = 0 the limit E{h(t)x}~1 is strictly decreasing. For example,

for coin tossing we have ao = 0, ai = l, po = q, pi = P, f(s)=q+ps,

g(s)=ps/(q+ps), h(t)=qt/p(l-t), E{h(t)x} =q/(l-t). The limit in
(2) is qa'-a-Ha'-a/pa'-a(l—t)a'-a-i.

An example of infinitely many values, where all permissible t are

in the range of g, is given by the Poisson distribution: For 0^5< oo,

0fkt<™,

f(s) = £ e~^ s< = <*<-»,        g(s) = sX,
•=o       t!

h(t) = t/X,       E{h(t)x} = e'~\

An example where we have permissible j-values outside the range

of g is the following:

1     »     1
/(') = -TTT £ - s', Ofksfkl,

f(3) «_i   i3

A   1    .

ti i3

h = g(i) = r(2)/r(3).

Hence for i>f(2)/f(3), h(t) = 1. For all such t we obtain limits 1 in
(2). Then for example,
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Vr[Sn = nt]

Tr[Sn = nt+l]

increases monotonely for 0</^f(2)/f(3) and is 1 from then on.

There is an interesting alternative way to interpret the process

determined by A*. Let us compute the conditional probability that

the first outcome was au given that the sum is nt. Denote this proba-

bility by ft. Then
" i i i

pi = Pr|A = a, | Sn = nt\.

That is

„ _ Pr[A = at] Pr[S_i = nl - a,-]

h ' Vr[Sn = nt]

By (2) we have

,.          n            piKt)^
hm pi  = —--r- •
»-.- E{hit)x]

If h<t<t2, then this limiting distribution is the same as the dis-

tribution of X*+t. Hence it has mean t. If t is outside this range, for

example t^t2, then the limiting distribution is equal to the distribu-

tion obtained for t = t2. If / equals the mean of the original distribu-

tion, then hit) = 1 and hence pi = pi.

For any distribution, the above procedure produces a one param-

eter family of distributions. This family includes the original dis-

tribution for t equal to its mean. It is easy to verify that this family

of distributions is closed in the sense that if any one element is

chosen for the starting distribution the same family is obtained.4

As an example of this let us take the Poisson distribution with

mean X as our starting distribution. Then

fi = Pr[A = i | Sn = nt] = ( " j (l/nY(n - l/n)"'-\

That is, we obtain the binomial measure for nt trials with probability

1/n for each trial. As n tends to infinity this distribution approaches

the Poisson distribution with mean \ = t. Note that we can obtain

this classical limiting theorem directly from our results. If we choose

t=Xwe know that we obtain the starting process. That is we obtain

the Poisson measure with X = /. Hence the above binomial measure

for t=~K approaches the Poisson measure when n tends to infinity.

Dartmouth College

4 This family of distributions was suggested to the author by J. L. Snell.


