A CLASS OF IRREDUCIBLE SYSTEMS OF GENERATORS FOR INFINITE SYMMETRIC GROUPS

R. B. CROUCH

If G is a group and M a subset of G then $\{M\}$ is the smallest subgroup of G containing M. If $\{M\} = G$ then M is a system of generators for G. If no proper subset of M is a system of generators for G then M is *irreducible*.

Let N be the set of positive integers; d the cardinal number of N; d^+ the successor of d; $S(d, d^+)$ the group of all one-to-one mappings of N onto itself; A(d, d) the alternating subgroup of $S(d, d^+)$; S(d, d) the finite symmetric subgroup of $S(d, d^+)$.

Theorem 1. Let M consist of the sequence of odd length cycles of $S(d, d^+)$

$$(1, 2, \dots, n_1), (n_1, n_1 + 1, \dots, n_2), \dots,$$

 $(n_i, n_i + 1, \dots, n_{i+1}), \dots$

with the order of the cycles $s_i = k_i \ge 3$. Then M is an irreducible system of generators for A(d, d).

PROOF. It is clear from the nature of the set M that $\{M\}\subseteq A(d,d)$. Furthermore, if c_i is removed from M then every element of the group generated by the remaining set leaves the integer $n_{i-1}+1$ fixed. It is sufficient, therefore, to prove that every element of A(d,d) belongs to $\{M\}$. Since the 3-cycles generate A(d,d) we shall show any 3-cycle belongs to M.

Let $x_1 < x_2 < x_3$ be any triple of elements of N. There exists an element s_i of M such that $x_i \in s_i$ and x_i is not the greatest element of s_i , i=1, 2, 3. Furthermore, there exists a positive integer α_i such that $s_i^{\alpha_i}(x_i) = m_i$ where m_i is the largest integer in s_i . In the set M choose the cycle, say s_0 , which is the immediate successor of s_3 in the sequence of cycles of M. Denote by $s_{i1}, s_{i2}, \cdots, s_{ir_i}$ the elements of M which occur in the sequence between s_i and s_0 . Consider the product

where t_i is the order of s_i . A computation shows that this product is

$$(x_1, a_2, \cdots, a_p)$$

where $s_0 = (a_1, a_2, \dots, a_p)$. Denote by d_1, d_2, d_3 the three cycles that

Presented to the Society, April 18, 1959; received by the editors March 7, 1959.

the above formula yields. Now compute $d_1d_2^{-1}$ and $d_1d_3^{-1}$ which yield (x_1, x_2, a_p) and (x_1, x_3, a_p) . A final computation of $d_1d_2^{-1}d_3d_1^{-1}$ shows that (x_1, x_2, x_3) belongs to M.

THEOREM 2. Let M consist of the sequence of cycles of $S(d, d^+)$, where c_1 is of even length,

$$(1, 2, \dots, n_1), (n_1, n_1 + 1, \dots, n_2), \dots,$$

 $(n_i, n_i + 1, \dots, n_{i+1}), \dots$

with the order of the cycles $s_i = k_i \ge 4$. Then M is an irreducible system of generators for S(d, d).

PROOF. By an argument similar to the one given above, it is clear that $A(d, d) \subseteq M$. If x_1, x_2 are any elements of N and $c_1 = (1, 2, \dots, n_1)$ then $(x_1, x_2)c_1$ is a member of A(d, d), hence in $\{M\}$. But c_1 belongs to M, hence to $\{M\}$ and $(x_1, x_2)c_1c_1^{-1} = (x_1, x_2)$ is in $\{M\}$.

COROLLARY. There exists d^d irreducible systems of generators for S(d, d) and A(d, d).

THEOREM 3. Let M consist of all elements of the form (i, i+1), $i=1, 2, \dots, n, \dots$. Then M is an irreducible system of generators for S(d, d).

Proof. Let r < s be any distinct elements of N. Then the formula

$$(r, r + 1)(r + 1, r + 2) \cdot \cdot \cdot (s - 1, s)(s - 2, s - 1) \cdot \cdot \cdot$$

$$(r+1, r) = (r, s)$$

shows that M contains any transposition. The set M is irreducible because if M_1 is M with (i, i+1) removed then M_1 does not contain (i+1, x) for x>i+1.

New Mexico State University