
ON THE STRUCTURE OF CERTAIN FACTORIZABLE
GROUPS, I

DANIEL GORENSTEIN1 AND I. N. HERSTEIN

1. A considerable amount is known about the structure of finite

factorizable groups—that is, groups G which can be represented in

the form AB, where A and B are subgroups of G. Such groups are

known to be solvable under a variety of assumptions on the subgroups

A and B. If A and B are both Abelian, Ito [6] has shown that G is

actually metabelian. If A and B are both cyclic, it is easy to see that

either a subgroup of A or a subgroup of B must be normal in G

(Douglas [l]).

Our investigations into the structure of finite groups of the form

ABA, A, B being cyclic, [4; 5] have included AB groups as a special

case. For our further work on this subject, it has been necessary to

determine the precise structure of an AB group in which A is its own

normalizes Our results are contained in the following theorem.

Theorem A. Let G be a finite group of the form AB, where A and B

are cyclic subgroups of G, and A is its own normalizer in G. Then G

contains a unique cyclic normal subgroup T such that G = AT and

Af~\T=l. Moreover, T is the commutator subgroup of G and G is meta-

cyclic.

In the final section we shall give an example of a group satisfying

the conditions of the theorem in which B itself is not normal. This

example2 will simultaneously resolve a question which Douglas raised

in his paper [2] on AB groups in which A and B are cyclic and

AC\B = 1. If A\, Bi are the maximal subgroups of A, B respectively

which are normal in G, Douglas called the normal subgroup N

= {Ai, Bi} the nucleus of G. Since G/N is a group satisfying the

same conditions as G, he constructed by induction a chain of groups

G = Go, Gi, ■ ■ • , Gr=l, where Gl+i = G,/A7,, A7,- being the nucleus of

d; and he then defined the integer r to be the type of G (with respect

to the subgroups A, B). Thus if B is normal in G, G is of type ^2

(with respect to A, B). Douglas raised the question of whether there

exist AB groups of arbitrarily high type.
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Our example will show that there do exist groups of the form AB,

with A, B cyclic, A(~\B = 1, and in addition, with A its own normal-

ize^ which are of arbitrarily high type with respect to A, B. However,

Theorem A shows that any such group is of type 2 with respect to

the subgroups A and T.

2. The proof of Theorem A is by induction on the order of G. We

assume throughout that A = (a) is of order h, B = (b) is of order k.

We first dispose of the uniqueness of T. In fact, ii G = AT, T nor-

mal in G,AC\T=1 (^not necessarily assumed cyclic), then T— [G,G].

Since G/T is Abelian, TQ. [G, G]. On the other hand, since N(A) =A,

a induces an automorphism <j> on T leaving only the identity element

fixed, and hence every element of T has a representation in the form

/_1</>(0 = t~1ata~l, and so is in [G, G],

We first consider the case in which a subgroup of A is normal in G.

If A(~\B = 1, let Ai be any subgroup of A, normal in G; while if

AC\B?±l, set Ai=AC\B. Ax = (aT) for some r\h. Let G = G/AX = AB,
where A = (a), B= (l) are the residues of A, B in G, and B has order

m. In both cases we clearly have AC\B = 1, so that by induction

G = AT, where T=(t) is cyclic, normal in G, and AC\T=1. Since

o(G) =rm, o(T) =m.

If t is a representative of t in G, our conditions imply

(1) tart~x = aT~<    and    atar1 = fiara   for suitable integers a, fi, y.

First of all, suppose (B — 1, m) — c; then (1) yields dtmlca~1 — i^mlc;

whence i-micdtmic = a. Hence im'cEN(A)r\T=Ar\T=l, and so e=l.

Thus

(2) (fi -l,m) = 1.

Now conjugating (1) by a leads to

ata^a'atar1 = ary,    whence   fiaraara-Tarl> = aT^.

Thus ar"P = ar"<, and so y^-^ = \ (mod h/r). On the other hand,tmart~m

= arsinceimisin^41. But by (1) tmaTt~m = ari'm, and soym = 1 (mod h/r).

It follows at once from (2) that 7= 1 (mod h/r), and hence taTt~1 = a".

Let tm = arS. Then arS = atma~l = t^maram = ar^+ram, whence

(3) S(fi - 1) = - am (mod h/r).

By (2) there exist integers i andj such that 1 =i(B—l) +jm, whence

by (3), a = ai(8—l)+ajm = (ai — 8j)(B—l) (mod h/r). Thus there
exists an integer e such that

(4) e(fi - 1) = a (mod h/r).
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We shall now show that the element x = tart generates a cyclic nor-

mal subgroup T' of G. It suffices to show that T' is invariant under

conjugation by t and a. Clearly txt~l=x. On the other hand,

(5) axar1 = fara+ri = fiartS = x11,

using (4).

Since a, t generate G, so do a and x; and hence G = AT'. Since x — i,

no power of x less than mis in A, and xm£^4.i. Then xm = aT" for some

integer v and x has order mq for some integer q. If q = 1, xm= 1, and

the desired conclusion ^4/^7"' = ! follows. If q>l, we proceed as fol-

lows: using (5) we obtain xm = xmP, which together with (2), implies

(6) ? | 08-1)    and    (q, m) = 1.

We can therefore find an integer w such that wra = l (mod q).

Setting y = xa~r'w, we find that ym = xma-ryu,m = ary(.i-wm) = j Moreover,

aya"1, = x^a~ryw = x^a~"w^ = y^. Thus y generates a cyclic normal sub-

group T of G of order m such that G=AT and yl P\ F = 1. This com-

pletes the proof in the case that a subgroup of A is normal in G.

3. We now consider the case in which no subgroup of A, and hence

in which some subgroup of B is normal in G. In particular AC\B = 1.

Let Bi = ibr) be a minimal subgroup of B which is normal in G. We

may assume r\k, and hence k/r is a prime p. Let G = G/Bi = AB,

where /T=(a), 5= (5) are the residues of/I, 5, in G. Clearly AC\B = 1.

Let 2Jo = A7(^4)n-8; -B0=(5") with s\r. In G we have the relations

(7) a~lbra = firX    and    bsab~s = aaJr"    for suitable integers X, a, /3.

Since NiA)=A, (7) implies

(8) (X - 1, p) = 1.

Hence there exists an integer 7 such that

(9) -y(X - 1) s - 0 (mod p).

Using (7) and (9), we now have

a-^b'+rya = ia-1b»a)ia-1bT->a) = (a0,-1i«+r'3)(ir^) = aa~1b3+r'/

whence

(10) bs+T^ab-s-ry = a".

Since NiA)=A and iHS = l, &s+r?=l, whence 5s = 1 and

Af(2) = A.

Hence by induction G = AT, T cyclic, normal in G, AC\T=l. If T
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denotes the inverse image of T in G, G = A T, T normal in G, meta-

cyclic and AC\T=1. By the uniqueness part of our argument,

T= [G, G] and hence by Ito's result, T is Abelian.

Thus to prove T is cyclic, it suffices to prove that each Sylow sub-

group of T is cyclic. Let Q be the g-Sylow subgroup of T for some

q\o(T). Then AQ = ABq for some subgroup BtEB. IiQ<T,AQ<G,
and the cyclicity of Q follows by induction on the order of G. We may

therefore assume T is of prime power order. Since Bx E T and

o(Bx) =p, T is a p-group.

If T= (i) and t is a representative of i in G, T is generated by t and

bT satisfying tbrt~l = br". Since br has order p, and / has order a power

of p, a=l (mod p) and T is Abelian. If T is not elementary Abelian,

the elements of order dividing p in T form a proper subgroup of T,

which by induction will be cyclic, and this will imply T is cyclic.

Hence we may assume T is elementary Abelian of type (p, p), so

that k = p2, r = p. Let t = ai¥. Since AC\T=1 and bpET,j^0 (modp).

Since T is Abelian,

(11) (aib')bp(aib')~1 = bp,

whence

(12) a~ibpai = bp.

Since T is normal, and is generated by / and bv,

(13) arilai = tabp&       for some integers a, fi

Hence in G, we have a~itai = ta, so that

1 = liv = (a,-it)p = ta+a*+'- -+<*Pa-ip.

Since AC\T=l and tp = l, a(ap-1)/(a-1)=0 (mod p). Hence either

a = 0 (mod p) or a = 1 (mod p). But a = 0 (mod p) is clearly impossible,

so that a = l (mod p) and consequently t" = t. Thus

Jjp = /j>&pUU+2+---+p)a-ip = a-iP if £ is ocj(ji

and consequently 6'p = 1, contrary to the fact that p\j and b has

order p2.

On the other hand, if p = 2, k = i, and (7) reduces to a~1b2a = b2, so

that b2EN(A), a contradiction. Thus G contains a cyclic normal sub-

group T such that G = AT and 401=1.

4. The example we shall now construct depends upon two arith-

metic identities, which are easily verified and which we state without

proof:

(14) 43""1 = 1 (mod 3"),        43""1 f& 1 (mod 3"+*)
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163"-1 - 1
(15) -= 3"-1 (mod 3").

16-1

Define the metacyclic group Gn by the relations

(16) a" =1,    tk = 1,    alar1 = t~\    where    h = 2-3""1    and    k = 3".

For (16) to define a group of order hk we must have

(- 4)" ■ 1    (mod k),

which follows at once from (14).

If A = (a), F = 7), we have Gn = AT, T normal in G„ and cyclic, and

AC\T=1.
If tlENiA), i= —ii (mod A) and hence k\i, whence /'"= 1. Thus /I

is its own normalizer in G„.

Let b = ta2 and put B = ib). We shall now prove

Theorem B. G„ *j o/ the form AB with AC\B = 1 and is of type 2n

with respect to the subgroups A and B.

Proof. From (16) we obtain

(17) 6* = ila2)' = /Ci6<-i)/(i6-i7 ati_

Since a has order 2-3n_1, (15) and (17) imply

(18) ft3"-1 = /3"   ,        whence b has order       k = 3n.

Moreover, no power of b is a power of a, for otherwise we would

have b   = or for some j < n, whence by (17)

163' - 1
-= 0 (mod 3n)
16-1

which would contradict (15) with re — 1 replaced by j. Thus AC\B = 1

and consequently the set AB contains hk = oiG„) elements. Thus

Gn=AB.
To prove G„ is of type 2re with respect to A, B, we proceed by in-

duction. If re = l, a2 = l, t = b, and aba~1 = b~1, so that Gi is of type 2

with respect to A, B.

We now compute the nucleus AT, of Gn. For a* to generate a normal

subgroup of G, we must have ( — 4)'=1 (mod k) by (16). The multi-

plicative order of 4 (mod 3") is 3n_1, and hence the multiplicative

order of ( — 4) (mod 3n) is 2-3n_1. Thus 2-3n~1| * and hence no sub-

group of A is normal in G„.

Now (18) implies that the subgroup (63" ') is normal in G„. We

shall prove that this subgroup is the nucleus Nn of G„. From (15) and
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(17), we have bw — tq3'a2'3'', where q^O (mod 3), and hence

(19) ab^ar1 = r^'V3'.

For (Z>3') to be normal in G„, we must have ab3'a~1 = bM' = tra^^ for

some integer r, whence by (19), X = l (mod 3n~1_0> and hence, for

some integer s, b** = /y3"~1+3'' = fr*+*a* ■**. We must therefore have

s-3"-1 + q3' = - 4g3''    (mod 3n).

Since q^O (mod 3), this is impossible if j<n— 1. Thus A7 = (ft'"-),

as asserted.

Let G„ = Gn/Nn = AB, where .4 = (a), U = (5) are the residues of A,

B in G„. If / is the residue of t in G„, G„ is defined by the relations

(20) ah = 1,      ?l* = 1,      aid'1 = H,       and       5 = td2.

Clearly no subgroup of B is normal in G„, and hence its nucleus AT. is

contained in A. By a calculation similar to the preceding, one can

show that Wn = (dh'3).

Now let Gn = (5n/Nn = AB where A = (S), B=(b), and 1 are the

residues of A, B, tin Gn. Consequently Gn is defined by the relations

(21) a"'3 = 1,      ?'3 = 1,      alar1 - Z~4      and      6 = 7a2.

We see at once from these relations that G„=G„_i, and hence by

induction G„ is of type 2(re — 1) with respect to A, B. It follows that

G„ is of type 2re with respect to A, B, and the theorem is proved.
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