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i. If z= E"-i tiVi, then z has the properties of the z in the proof of

Theorem 3.3, and it follows that ||P|] =2.
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EXPANSIONS OF PARABOLIC WAVE FUNCTIONS

Y. ALAVI1 AND C. P. WELLS

1. Introduction. The main result of this paper is an expansion of

parabolic wave functions in a series of spherical wave functions with

coefficients expressed in terms of Pasternack's functions. The series

can be inverted, giving spherical wave functions as integrals of para-

bolic wave functions. Special cases include an expansion due to

Hochstadt [l] and the limiting case where the wave functions be-

come potential functions. We also give a new derivation of the bi-

linear generating function in the continuous case for the parabolic

wave functions.

We call either \f/(£, X)i/'(r?, —X)ei"*, or simply ^(£, X)^(f, —X), where

\p(£, X) satisfies

d^z dz
w s2 ^ + * ^ + (*2*4 +x*2 - "2)z = °>

d£2 d£

a parabolic wave function. The solution of (1) in which we are inter-

ested is given by

*(*, X) = P exp(ike/2)xFx((w + p + l)/2; p + 1; -ik?),

or in Whittaker's notation

*(£, X) = (-ikyiti-ikft-WM-i./wi-im,

where X and ft are real and w= —i\/2k. In physical applications

p is often an integer since then \p(%, X) is regular and single valued
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for all £. However since the analysis is straightforward for arbitrary

p we shall not restrict it unless so indicated.

2. The expansion. We assume the expansion

oo

(2) *(£, XWfc -A) = Z an+Jn+liikr)PZ,(cos 6)
71=0

where jn+nikr) is a spherical Bessel function, P^+(l(cos 0) a Legendre

function and the a£+ll are to be determined. The relations between

spherical and parabolic coordinates give 2r = %2+n2 and cos 9

= (£,2-n2)/(¥ + n2). Dividing both sides of (2) by ^"rj" and letting

£, t?->0, we find < = r(2p + 2)/R
Further if we divide (2) by n*- and let 17—>0, we get

(3) *($, x)r(p. +1) = z dU^fjn+^kin)-
71—0

We now require that the right side of (3) be a solution of (1) and this

leads to

(4) Z <h+AVJn+M  +   (1   - /O/m-mM  +   (» + iw)jn+M]   =  0
11=0

with v — k^/2. If we make use of the recursion formulas and differ-

ential equation for/n+„(fl), we can reduce (4) to

» -£(n _(- 2u + 1)£ in+1 -77—7-7—i«+M(^)[(« + P + DT* + 2p + D^+i
„=o r(» + 1)

+ w(2« +  2p +   !)<£+„  —   »(« + fi)Cn+IL-l]   =  0,

where we have put n\a^+tt=i2n+2p + l)T(n + 2p + l)i''(^+ll. This

implies that the c£+„ satisfy

in + 2p + l)in + p + l)cn+li+i + wi2n + 2p + \)cn+,

— «(« + p)cn+M_i = 0

which is also the recursion formula for the functions F*+Iiiw) studied

by Pasternack [2]. In terms of hypergeometric functions

Fn+xiw) = 3F2i-n - pl, n + p + 1, (1 + w + p)/2; 1, 1 + p; 1)

and is defined for all p except negative integral values. Moreover

ti(w) = 2Fi(-p, (1 + w + p)/2; 1; 1)

r[(l + p - w)/2]

' Tiji + i)r[(i - p - w)/2] '
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We choose that solution of (5) for which

Cn-\-fi * n+n

r"    ~     F"    '

and find the coefficients of (2) given by

...    „,    .   ts £+*      ,„    ,  „    ,   .   r(« + 2M+l) .   F"n+,(w)
(6)    T(n + 1) -= (2re + 2p + 1)-in- •

< V(2p + 2) FI

The convergence of (2) is assured for all values of the variables since

for large re, F^+I1(w) =0(na), P~£. (cos 0) =0(nb), with a and b inde-

pendent of re, while jn+ll(kr) =0(l/T(n+p + l)).

Although an alternative derivation2 of (2) can be given the above

method has the advantage of being applicable to other expansion

problems. However for the sake of completeness we sketch the second

method which starts with the representation of the parabolic wave

functions [3]

t(aby2[T(l + p)]2
M\,ui2iat)M\,a/2ibt) =-

r((i + p)/2 + «)r((i + p)/2 - k)

r*        V-(a + b)t "1
•  I     exp   -cos 4>   JMab)1'2 sin <b)(cot <b/2)2d<p

and the expansion [4]

(sin a sin ffy-pjjji sin a sin 0) exp (iz cos a cos 0) = 22ll(2irz)~112

(8)
,    "   inn\(2n+2p+l) „+i/2 u+1/2

• [r(M+l/2)]2 £        \ "        Jn+,+il2(z)Cn+    (cos a)cf    (cos fi)
„_o    (re-f-2p+l)z"

where the C£+1/2 are the Gegenbauer polynomials. If we substitute

(8) into (7), integrate termwise and use some of the usual trans-

formations of hypergeometric functions we get (2) with the coeffi-

cients given by (6).

3. Inversion of (2). The functions F£+I1(w) form an orthogonal set

with a weight factor. Precisely we have

sinxp f° Fn+>i-it)Fm"+»iit)dt
- I      -=0, re 5^ m

2p   J _«,    cosh irt + cos irp>

1
=-> n = m.

(2re + 2p + 1)

2 This was pointed out to one of the authors by A. Erd61yi.
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This result is due to Bateman [5],3 and was established for F£ with

n integral. Extension of the result to F£+ll can be made without diffi-

culty. By means of (9) we invert (2) and obtain

shurp /•- F~U-it)K(it)^,K)Hv, -*)dt

2p    J _„ cosh rt + cos 7rp

= T(2p + 2)T(n + 2p + l)(t>/n\)k~"jn+)l(kr)P~Ucos 6),

a result which is equivalent to one given by Buchholz [3].

4. Miscellaneous results. There are several interesting special cases

of (2) and (3) as well as some known results which follow from (2)

and the properties of the Pasternack functions. Of these we mention

without proof:

(1) For p = m an integer, we have from (3)

"   (2n + \)(n + m)\in~m FZ(w)
(11) M, X) = Z-.7^-^— r^/n(^/2).

n=m        m\(n-m)\km        FZ(w)

(2) For — w = 2s + l+m, s and m integers, the expansion (2) re-

duces to that of Hochstadt [l].

(3) If we put p = m in (2) and let k—>0, we get after some simplify-

ing

°°  jm(_Xr/2)™
(12) M\wk)Mi\^v) = Z    ,      ,     \, P?(cos 6)

„_m «!(» + m)\

which may be thought of as an expansion of parabolic potential func-

tions in terms of spherical potential functions.

(4) Finally we sketch a derivation of the bilinear generating func-

tion in the continuous case for the parabolic wave functions. The

result, due to Erdelyi [6], is

ilxy)112

-f-— exp[-(x + y)(l - 0/2(1 + /)]7[2(tey)"V(l + /)]
1 "T" *

(13)
l   r **r(l/2 - z + p)r(i/2 + « + p)

= ^iJL-[r(2p + i)].-M^MMd*

where L is a path from — i<x> to i<x> separating the poles of

Til/2—z+p) from those of T(l/2+z+p). To give a derivation of

(13) based on the properties of the Pasternack functions, we start

with equation (8) and the following representation of the Legendre

functions [2]:

3 The result given in [5] omits the factor sin iryn/2/i.
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/»   . ,,-2
e   Fn+n(iz — p) sech — dz.

-00 2

We now express the Gegenbauer polynomials in (8) in terms of

Legendre functions and use the representation (14) for P£+„ (cos a)

with cos a = tanh x—(l—t)/(l+t). Interchanging integration and

summation together with the use of (2) yields, after some manipula-

tion, the result (13). The interchange of integration and summation

can be justified without difficulty.
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