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ON PROJECTIONS OF SEPARABLE SUBSPACES OF
(m)  ONTO (c)

R. D. MCWILLIAMS1

1. There exists no bounded projection of the Banach space (m)

of bounded real sequences onto the space (c) of convergent sequences

[l] or onto the space (co) of null sequences [2]. It has been shown

however by Sobczyk [2] that if B is a separable subspace of (m)

properly containing (c0), then there exists a projection P of norm 2 of

B onto (c0).

In the present paper we show that if B is a separable subspace of

(m) containing (c), then there is a projection Q of B onto (c) with

ll^l| =3. We then prove a theorem giving a lower bound for the norms

of projections onto (c) of spaces of the form (c)+(x), where (x) is the

one-dimensional subspace determined by an element xfj(c). Using

this result, we exhibit for each re> 1 a subspace Bn determined by (c)

and n—1 other elements of (m), such that the minimum of the norms

of projections of B„ onto (c) is 3 —2w_1. It follows that there exists a

separable subspace B^)(c) such that any projection of B onto (c) has

norm at least 3.
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2. The following lemma adds to Sobczyk's theorem [2, pp. 942-

944] the fact that if B contains (c), then P can be chosen so that

Pe = 0, where e = (l, 1, • • • )•

Lemma 2.1. If B is a separable subspace of im) containing (c), then

there exists a projection P of B onto (c0) such that ||P|| = 2 and Pe = 0.

For the proof of the lemma, we follow Sobczyk's proof2 in every

detail except that we can and do take the first element A7 of the se-

quence Xi, X2, • • • to be e. It then follows that PNe = 0 for each N

and hence that the limit Pe = limN PNe = 0.

Theorem 2.2. If B is a separable subspace of im) containing (c),

then there exists a projection Q of B onto (c) such that ||()|| = 3.

Proof. Let /(y)=limyyy for all y=(yy)E(c). Then /£(c)* and

||/||=1, and by the Hahn-Banach theorem there exists an FEB*

such that ||F|| =1 and F is an extension of/. Define

(2.1) Qx = Px + F(x)e, (* E B)

where P is a projection of B onto (e0) with ||p|| =2 and Pe = 0, as

given by Lemma 2.1. Then Q is a projection of B onto (c), and

||c?N|p||+IMI=3.
3. In the present section we consider subspaces of the form

B = ic) + ix) where x = (xy) is in im) but not in (c).

Theorem 3.1. Let x be an element of im) such that a>/3= —a, where

a = lim supy xy and /? = lim infy xy. If P is any projection of (c) + (x)

onto (c) such that Px = (yy) E 7o), then

n   ii      3a — (3
(3-D ||P||=-j-

a — p

Proof. Given 0<e<a/2, there exists a positive integer N such

that XN>a — e and such that |yy[ <e and /3 — e<Xj<a + e for all

j = N. Let z = izj) he the element of (c) such that

-Xj if j < N,

/? — 3a Xn
,     , - if/ = N,
(3.2) zy =        2a

-iij>N.

_ .        2
2 The reader may be helped in the countable case by the remark that in Sobczyk's

proof the matrices { {&,-,W)} }„ can be chosen so that if n<n', then { [fc,wj }„ is a

submatrix of { {*i,-w>} }„7. Since completing this paper, the author has learned from

D. W. Dean of an alternative proof of Sobczyk's theorem and of Theorem 2.2 of the

present paper.
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Then P(z+x) =z+Px. We observe that

■J rt

(3.3)      \\z + Px\\ £  \zN + yN\   ^ -^--(a -«)-«> 0,
2a

and that

||z + x|| = SUp> I Zj + Xj\

(3.4)
a - fi

s —+ ..

Now ||P|| ^||P(z+x)||/||z+x||, and it follows, since e may be arbi-

trarily small, that (3.1) holds.

Corollary 3.2. // B is any subspace of (m) which properly contains

(c) and if P is any projection of B onto (c), then \\P\\ ^ 2.

Proof. There exists yj^O in B such that Py = 0. Either y or — y

must satisfy the hypothesis on x in Theorem 3.1, and since B3(c)

+iy),

,.   „       3a-0 a+ 13
(3.5) P   ^-=2H--£2.

a — (3 a -/3

Theorem 3.3. If x is an element of (m) but not of (c), then

(3.6) min {||P]|: P is a projection of (c) +(x) onto (c)} = 2.

Proof. It is trivial to find an element yE(c) such that z=(zf)

— x+y has the property that ||z|| =lim sup,- Zj= —lim inij z3-. Let P

be the projection of (c) + (x) onto (c) such that Pz = 0. Then for any

real number t and any wE(c),

(3.7) ||P(te + w)|| = |H| ^ ||te + w\\ + \\tz\\ ̂  2\\lz + w\\,

which with Corollary 3.2 implies (3.6).

4. We now use Theorem 3.1 to show that the number 3 which

appears in Theorem 2.2 cannot be lessened.

Given any integer reS:2 let B„ he the subspace of (m) defined by

(4.1) Bn = <y = (yj): lim yi+nt exists for * = 1, • • • , re> .

For t = l, • • • , n let x,= (x,;) be the element of Bn such that x,; = 1

if j = i (mod re) and Xiy = 0 otherwise. Then every yEBn can be ex-

pressed uniquely in the form
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n

(4.2) y = z + zZhXi,
i=i

where z£(e0) and h, ■ ■ • , tn are real numbers.

Theorem 4.1. For n^2,

(4.3) min {||P||: P is a projection of Bn onto (c)} = 3 — 2w_1.

Proof. Let Pn be the projection of Bn onto (c) defined by

n

(4.4) P„y = (wt) = z+zZ Un-^e.
i=i

For 7= 1, • • • 7 n and t^O,

n

|  ^io+nf I     =      Jh+nt +   Z U(n~X   —   Xi,ia+nt)
i=l

£ \yn+nt\  +(l-w-1)|/iJ  -fw-1    Z     |*,|
x=l;tVi'o

g (3 - 2n-1)||y||,

since |f,| g||y|| (i = l, • • • , n). Thus, ||Pn|| =3-2«~1.

If on the other hand P is any projection of Bn onto (c) and if

Ui = iuii) =Px,, then the limit Kj = limy u,j exists. Since Pe = e, it must

be true that Z"-i "» = *• Hence, there must exist some 7 (1 ^7^«)

such that i>i0 = »-1. Letting x = x,-0 — vioe, we see that x satisfies the

hypothesis of Theorem 3.1 with a = l— vifs, /3= — vio. It follows that

||p|| = 3 — 2vi0 = 3 — 2w-1, and the theorem is proved.

Corollary 4.2. The space 5 = U"_! Bn is a separable subspace of

im) such that

(4.6) min {||p||: P is a projection of B onto (c)}  = 3.

Proof. It is clear that B is a separable subspace of im). If P is a

projection of B onto (c), then ||p|| ^||P|5„|| =3 —2»_1 for all n, which

with Theorem 2.2 implies (4.6).

Remark 4.3. We exhibit finally a subspace S of countably infinite

dimension such that SC^ic) = {o}, for which there does exist a pro-

jection of norm 2 of S + ic) onto (c). Let 5 contain all finite linear

combinations of yi, y2, ■ ■ ■  where y;= (y,y) is defined by

1    if/ = 2' (mod 2*),

(4.7) yij =    -1    if j m (2* - 1) (mod 2'),

0    otherwise.

Let P be the projection of 5+(c) onto (c) such that Py, = 0 for all
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i. If z= E"-i tiVi, then z has the properties of the z in the proof of

Theorem 3.3, and it follows that ||P|] =2.
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EXPANSIONS OF PARABOLIC WAVE FUNCTIONS

Y. ALAVI1 AND C. P. WELLS

1. Introduction. The main result of this paper is an expansion of

parabolic wave functions in a series of spherical wave functions with

coefficients expressed in terms of Pasternack's functions. The series

can be inverted, giving spherical wave functions as integrals of para-

bolic wave functions. Special cases include an expansion due to

Hochstadt [l] and the limiting case where the wave functions be-

come potential functions. We also give a new derivation of the bi-

linear generating function in the continuous case for the parabolic

wave functions.

We call either \f/(£, X)i/'(r?, —X)ei"*, or simply ^(£, X)^(f, —X), where

\p(£, X) satisfies

d^z dz
w s2 ^ + * ^ + (*2*4 +x*2 - "2)z = °>

d£2 d£

a parabolic wave function. The solution of (1) in which we are inter-

ested is given by

*(*, X) = P exp(ike/2)xFx((w + p + l)/2; p + 1; -ik?),

or in Whittaker's notation

*(£, X) = (-ikyiti-ikft-WM-i./wi-im,

where X and ft are real and w= —i\/2k. In physical applications

p is often an integer since then \p(%, X) is regular and single valued
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