- 5. , Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil I, Jahresbericht der Deutschen Mathematiker-Vereinigung vol. 35 (1926) pp. 1-55.
- 6. Julia Robinson, Definability and decision problems in arithmetic, J. Symb. Logic vol. 14 (1949) pp. 98-114.
- 7. R. M. Robinson, *Undecidable rings*, Trans. Amer. Math. Soc. vol. 70 (1951) pp. 137-159
- 8. ——, Arithmetical definability of field elements, J. Symb. Logic vol. 16 (1951) pp. 125-126.
- 9. A. Tarski, A. Mostowski, and R. M. Robinson, *Undecidable theories*, Amsterdam, North-Holland Publishing Company, 1953.
- 10. Ernst Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. vol. 176 (1936) pp. 31-44.

CONTRA COSTA COUNTY, CALIFORNIA

CONCERNING LOCAL SEPARABILITY IN LOCALLY PERIPHERALLY SEPARABLE SPACES

L. B. TREYBIG

Alexandroff [1] has shown that a connected metric space is completely separable if it is locally completely separable. In the previous statement "completely separable" may be replaced with "separable," since these are equivalent conditions in a metric space. In his dissertation (Texas, 1958) the author has shown an example of a connected, locally peripherally separable [2], metric space which is not separable, but which has the property that the set of all points at which it is not locally separable is separable. The purpose of this paper is to give a further result in this direction.

THEOREM. If Σ is any connected, locally peripherally separable, metric space which is not separable, then the set of all points at which Σ is not locally separable is uncountable.

PROOF. On the contrary, suppose that there exists such a space Σ where the set M of all points at which Σ is not locally separable is countable. Let M be denoted by $P_1 + P_2 + P_3 + \cdots$, where, if $i \neq j$, $P_i \neq P_j$. For each positive integer n let G_n be the collection of all locally peripherally separable domains having diameter less than 1/n. Let d denote a positive integer and g_1, g_2, g_3, \cdots denote a sequence such that for each n, P_n and g_n are elements of g_n and G_{n+d} , respectively. Let H be a collection to which x belongs if and only if x is g_i for some i. For each positive integer n, let G_n' be the collection of all

Presented to the Society, August 29, 1958; received by the editors January 22, 1959.

separable elements of G_n . The point set M is closed because Σ would not be locally separable at any limit point of M. For each point P of S-M let j(P) denote the least integer i such that some domain r of G'_d has the property that if x and y are two intersecting domains of G'_i such that x+y contains P, then x+y is a subset of r. Let r(P) denote some such r.

Suppose that no countable subcollection of G_d covers S. Each point on the boundary of H^* lies on the boundary of g_i for some i; if not, S would not be locally separable at such a point. Therefore \overline{H}^*-H^* is separable. Let Q_1 denote some countable subcollection of G_d' which covers \overline{H}^*-H^* . Let $M_1=\overline{Q}_1^*+H^*$. Since Q_1 is countable and each domain of Q_1 is separable, M_1-H^* is separable. There is a countable set K_1 dense in M_1-H^* such that the set Q_2 of all r(P)'s for P's in K_1 covers M_1-H^* . Let $M_2=M_1+\overline{Q}_2^*$. There exists a countable set K_2 dense in M_2-H^* such that the set Q_3 of all r(P)'s for P's in K_2 covers M_2-H^* . Let $M_3=M_2+\overline{Q}_3^*$ and consider a continuation of this process.

The collection $H+(Q_1+Q_2+Q_3+\cdots)$ is countable and therefore does not cover S. Clearly $[H+(Q_1+Q_2+Q_3+\cdots)]^*$ is a domain; so let P denote some point on the boundary of this domain. Let $K = (K_1 + K_2 + \cdots)$. Let R_1 denote some domain of G'_d which contains P and let x_1 denote the largest integer i such that R_1 belongs to G_i' . Let T_1 denote a point of K in R_1 . Let R_2 denote a domain of G'_{x_1+1} which contains P and is a subset of R_1-T_1 . Let x_2 denote the largest integer i such that R_2 belongs to G_i and let T_2 denote a point of K in R_2 . Let R_3 denote a domain of G'_{x_2+1} which contains P and is a subset of $R_2 - T_2$. Let x_3 denote the largest integer i such that R_3 belongs to G'_i , and so forth. $d \le x_1 < x_2 < x_3 < \cdots$. For each n, $x_n > j(T_n)$; if not, for some n, R_n would be a subset of $r(T_n)$ and P would lie in Q_i^* for some i. There exists a positive integer t such that if x and y are two intersecting domains of G'_{x_t} such that x+y intersects R_t , then x+y is a subset of R_1 . Therefore $j(T_t) \ge x_t$. This yields a contradiction; so $H+(Q_1+Q_2+\cdots)$ covers S. Therefore for each d some countable subcollection of G_d covers S. Σ is therefore separable; but this is contrary to the hypothesis, so M is uncountable.

References

- 1. Paul Alexandroff, Über die Metrization der im kleinen kompakten topologischen Raume, Math. Ann. vol. 92 (1924) pp. 294-301.
- 2. F. B. Jones, A theorem concerning locally peripherally separable spaces, Bull. Amer. Math. Soc. vol. 41 (1935) pp. 437-439.

THE UNIVERSITY OF TEXAS AND TULANE UNIVERSITY