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H. F. MacNeish [l] demonstrated constructively the existence of

a set of t mutually orthogonal latin squares of each order re, where / is

one less than the smallest factor of the prime-power decomposition

of re. The construction was generalized somewhat and put on an

algebraic foundation by H. B. Mann [2; 3, p. 105]. MacNeish [l]

conjectured that t is the maximum number for each re. Had this con-

jecture been established, answers to two major questions would have

been corollaries. These are: (1) the famous conjecture of Euler, dating

from 1782, that there exists no pair of orthogonal latin squares of

order = 2 (mod 4); (2) the conjecture that all finite projective planes

are of prime-power orders—for an affine plane of order re is equivalent

to a set of re —1 mutually orthogonal latin squares of order re.

The purpose of this paper is to develop a construction yielding some

new sets of mutually orthogonal latin squares. The general result is

Theorem 1. For a few orders (possibly infinitely many distributed

sparsely among the positive integers), Theorem 2 establishes the

existence of sets of more than / mutually orthogonal latin squares;

thus MacNeish's conjecture is disproved. Theorem 1 likely yields

more than t for orders other than those covered by Theorem 2, but

the author has found no example.

The following lemma is familiar to some, but is apparently not in

the literature.

Lemma. A set of k — 2 mutually orthogonal latin squares of order n is

equivalent to a set of n2 ordered k-tuples, (aa,ai2, ■ ■ ■ ,aa),i=l, • • ■ , re2,

with elements a,y the numbers 1, • • • , re, and such that for each pair u, v

of distinct numbers from 1, ■ ■ ■ , k and each pair x, y of numbers from

1, • • • , re, the relations aiu = x and a,„ = y both hold for some

i (i=l, ■ ■ ■ , re2).

Proof. There being exactly re2 ordered ^-tuples in the set, o,u = x

and aiv = y are satisfied for a unique i. Associate the re2 ̂ -tuples with

cells of k — 2 nXn matrices, aix and ai2 chosen as the row and column

indices respectively, and an, j = 3, ■ ■ • , k, the digit in this cell of

the (j — 2)nd matrix. The conditions on the ^-tuples imply that the

k — 2 matrices are mutually orthogonal  latin squares. For when u
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and v are 1 and 2, each cell of the matrices is accounted for. When

u = l and v>2, each row of the (v — 2)nd matrix contains each digit

—only once, of course. Similarly when u = 2 and v> 2, the same holds

on columns. For re>2 and v>2, each ordered pair of digits occurs

(once) in some cell of the (u — 2)nd and (v — 2)nd matrices. The con-

verse construction of the set of ordered /Vtuples from the set of

mutually orthogonal latin squares is carried out similarly. Since the

conditions on the ordered ^-tuples are symmetric on the positions,

any distinct pair u, v from 1, • • • , k may be chosen as row and

column indices.

The general result is

Theorem 1. // there exists a balanced incomplete block design isee

[3 ] for definitions) with X = 1 and k the order of a projective plane, then

there exists a set of k — 2 mutually orthogonal latin squares of order v.

Proof. A projective plane of order k can be represented by a doubly

transitive set 5 of permutations of degree k with the property that for

p and q distinct permutations of S, pq-1 fixes at most one of the k

letters [4]. The class of systems S includes all doubly transitive finite

groups, in which only the identity fixes two letters; such groups exist

if and only if k is a prime-power [5]. Whether there exists an S ol

any degree k not a prime-power is equivalent to the unsettled question

of existence of a projective plane of order k.

Select an ordering of the k digits in each block of the design. Re-

taining the digits, permute the positions by all elements of a system

S, thereby generating k(k — 1) ordered /%-tuples from each block. To

the class of ordered ^-tuples already formed, adjoin (1, 1, • • • , 1),

(2, 2, ■ • • , 2), • • ■ , iv, v, ■ ■ ■ , v), each of length k. A set of ordered

^-tuples fulfilling the conditions of the lemma has been constructed.

The above construction is not at all unique; some choices of v and

k can be expected to yield a large number of nonisomorphic sets of

k — 2 mutually orthogonal latin squares. First, a balanced incomplete

design is not in general determined within isomorphism by its param-

eters. Also, for k the order of a projective plane, there exist noniso-

morphic systems 5; blocks need not be operated upon by the same S.

For the Desarguesian plane of prime-power order k, S can be any

coset of the doubly transitive group of degree k in which the subgroup

fixing a letter is cyclic. Known non-Desarguesian planes determine

systems S which are not groups or cosets of groups.

Theorem 1 is specialized and strengthened slightly to yield

Theorem 2. If m is a Mersenne prime >3, or m + 1 is a Fermat
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prime >3, then there exists a set of m mutually orthogonal latin squares

of order m2+m + l. (For all orders included in Theorem 2, the construc-

tion of MacNeish produces only t = 2 orthogonal latin squares.)

Proof. The hypothesis implies that both m and m + 1 are prime-

powers. There exists a projective plane of order m; that is, a balanced

incomplete block design withX = l,v = m2+m + l, and k — m + 1. Also,

there exists a projective plane of order k — m + 1. The hypothesis of

Theorem 1 is fulfilled, so that a set of k — 2=m — 1 mutually orthog-

onal latin squares of order v may be constructed.

For each prime-power m, there exists a Desarguesian plane possess-

ing a collineation which is cyclic on all v points [6]. Thus the set of

v2 A-tuples may be constructed so that if (xx, x2, ■ ■ ■ , xk) is in the set,

then (xi + 1, x2 + l, • • • , xk + l) is also, the addition being modulo v.

This means that if cell (xi, x2) of latin square j — 2 contains digit Xj,

then cell (xx + l, x2 + l) of the same square contains digit Xj + 1—again

modulo v. Thus, in this restricted situation, there is one more latin

square orthogonal to all m — 1 previously constructed, namely a

cyclic square whose (xx, x2) cell contains x2 — xx + l (mod v).

In all cases covered by Theorem 2, m = l (mod 3). In turn v = m2+m

+ 1=3 (mod 9), so that t = 2 in MacNeish's construction.

An unfavorable aspect of Theorem 2 is that all orders v of mutually

orthogonal latin squares are among those for which Bruck and Ryser

[7] have demonstrated nonexistence of projective planes.

Theorem 1 cannot yield the first counter-example to Euler's con-

jecture of nonexistence of pairs of orthogonal latin squares of orders

= 2 (mod 4). When the order v of the squares is even, the relation

v— l=r(k — 1) on parameters (with X=l) of balanced incomplete

block designs implies that r is odd and that k is even. In turn, the

relation vr = bk yields the information that k is divisible by two to no

higher power than is v. When v is divisible by two to the first power

only, k (necessarily even) is also twice an odd integer, k = 2 yields no

latin squares. Thus a counter-example based on Theorem 1 would

require construction in advance of a projective plane of order

= 2 (mod 4), and >2, and a fortiori of a counter-example to Euler's

conjecture.

The first case where Theorem 2 applies is m = 4, yielding a set of

four mutually orthogonal latin squares of order 42+4-fT = 21. One

is the cyclic square, with digit 1 on the principal diagonal. As pointed

out in the proof of Theorem 2, the other three latin squares are gener-

ated by the rule: if cell (x\, x2) contains digit Xj, then cell (xi + 1, #2 + l)

contains Xj + 1, all x's modulo 21. A set of first rows of the three latin

squares is given by the following ordered lists:
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1, 7, 13, 5, 12, 8, 19, 21, 2, 4, 14, 10, 17, 20, 11, 3, 16, 6, 9, 15, 18;
1, 19, 17, 12, 10, 21, 9, 18, 7, 5, 20, 4, 16, 15, 14, 13, 3, 8, 2, 11, 6;
1, 9, 16, 10, 4, 18, 2, 6, 19, 12, 15, 5, 3, 11, 20, 17, 13, 21, 7, 14, 8.

The author wishes to thank Professor S. K. Stein for informing him

that MacNeish had made the conjecture disproved in this paper, and

for providing a bibliography [8]; and Dr. Robert Silverman of the

Ohio State University for pointing out that in Theorem 1 the system

of permutations need not be a group.
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