A CONGRUENCE SATISFIED BY THE THETA-CONSTANT ϑ_{3}

> L. CARLITZ

Let

$$
\vartheta_{3}=\sum_{-\infty}^{\infty} q^{n^{2}}
$$

and let p denote an arbitrary odd prime. The following congruence appears incidentally in [1 , formula (3.7)]:

$$
\begin{equation*}
\vartheta_{3}^{2(p-1)} \sum_{r=0}^{m}\binom{m}{r}^{2} k^{2 r} \equiv 1(\bmod p) \tag{1}
\end{equation*}
$$

where $p=2 m+1$ and k^{2} has its usual significance in the theory of elliptic functions. The congruence (1) is to be interpreted in the following way. Using the familiar identity

$$
\begin{equation*}
k^{2}=16 q \prod_{1}^{\infty}\left(\frac{1+q^{2 n}}{1+q^{2 n-1}}\right)^{8}, \tag{2}
\end{equation*}
$$

(1) can be written entirely in terms of q or entirely in terms of k^{2}. It follows from (2) that

$$
\begin{equation*}
k^{2}=\sum_{n=1}^{\infty} a_{n} q^{n} \quad\left(a_{1}=16\right), \tag{3}
\end{equation*}
$$

where the a_{n} are rational integers, and that

$$
\begin{equation*}
q=\sum_{n=1}^{\infty} b_{n} k^{2 n} \quad\left(b_{1}=1 / 16\right) \tag{4}
\end{equation*}
$$

where the denominators of the b_{n} are powers of 2 . If we substitute from (3) into (1) we get a certain set of congruences; if we substitute from (4) we get another set. By Lemma 1 of [1] these congruences are equivalent. We now show how the second substitution can be carried out explicitly.

We recall that the complete elliptic integral of the first kind is given by

$$
K=\frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2} ; 1 ; k^{2}\right),
$$

Received by the editors February 9, 1959.
where F denotes the hypergeometric function; also we recall that

$$
\vartheta_{3}^{2}=2 K / \pi .
$$

Consequently (1) becomes

$$
\begin{equation*}
\left\{F\left(\frac{1}{2}, \frac{1}{2} ; 1 ; k^{2}\right)\right\}^{p-1} \sum_{r=0}^{m}\binom{m}{k}^{2} k^{2 r} \equiv 1(\bmod p) \tag{5}
\end{equation*}
$$

Now

$$
F\left(\frac{1}{2}, \frac{1}{2} ; 1 ; k^{2}\right)=\sum_{r=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{r}\left(\frac{1}{2}\right)_{r}}{r!r!} k^{2 r}
$$

also

$$
\left(\frac{1}{2}\right)_{r}=\frac{1}{2} \frac{3}{2} \cdots \frac{2 r-1}{2}=\frac{(2 r)!}{2^{2 r} r!}
$$

so that

$$
\begin{equation*}
\frac{\left(\frac{1}{2}\right)_{r}}{r!}=\frac{1}{2^{2 r}}\binom{2 r}{r} \tag{6}
\end{equation*}
$$

We recall that, if [2, p. 419]

$$
\begin{aligned}
a & =a_{0}+a_{1} p+a_{2} p^{2}+\cdots & & \left(0 \leqq a_{i}<p\right) \\
b & =b_{0}+b_{1} p+b_{2} p^{2}+\cdots & & \left(0 \leqq b_{i}<p\right)
\end{aligned}
$$

then

$$
\binom{a}{b} \equiv\binom{a_{0}}{b_{0}}\binom{a_{1}}{b_{1}}\binom{a_{2}}{b_{2}} \cdots(\bmod p)
$$

It follows that if

$$
r=r_{0}+r_{1} p+r_{2} p^{2}+\cdots \quad\left(0 \leqq r_{i}<p\right)
$$

then

$$
\begin{equation*}
\binom{2 r}{r} \equiv\binom{2 r_{0}}{r_{0}}\binom{2 r_{1}}{r_{1}}\binom{2 r_{2}}{r_{2}} \cdots(\bmod p) \tag{7}
\end{equation*}
$$

in particular

$$
\binom{2 r}{r} \equiv 0
$$

unless

$$
0 \leqq r_{i}<p / 2 \quad(i=0,1,2, \cdots)
$$

Using (6) and (7), we get
$F\left(\frac{1}{2}, \frac{1}{2} ; 1 ; k^{2}\right)$

$$
\begin{aligned}
& \equiv \sum_{r_{0}=0}^{m} \sum_{r_{1}=0}^{m} \cdots\binom{2 r_{0}}{r_{0}}^{2}\binom{2 r_{1}}{r_{1}}^{2} \cdots\left(\frac{k}{4}\right)^{2\left(r_{0}+r_{1} p+\cdots\right)} \\
& \equiv \prod_{j=0}^{\infty}\left\{\sum_{s=0}^{m}\binom{2 s}{s}^{2}\left(\frac{k}{4}\right)^{2 p i_{s}}\right\}(\bmod p)
\end{aligned}
$$

Now it is also easily verified that

$$
\frac{1}{2^{2 s}}\binom{2 s}{s}=\frac{\left(\frac{1}{2}\right)_{s}}{s!} \equiv(-1)^{*}\binom{m}{s}(\bmod p)
$$

for $0 \leqq s \leqq m$; therefore

$$
\begin{equation*}
F\left(\frac{1}{2}, \frac{1}{2} ; 1 ; k^{2}\right) \equiv \prod_{j=0}^{\infty} \sum_{s=0}^{m}\binom{m}{s}^{2} k^{2 p i s}(\bmod p) \tag{8}
\end{equation*}
$$

If for brevity we put

$$
S\left(k^{2}\right)=\sum_{s=0}^{m}\binom{m}{s}^{2} k^{2 s}
$$

then it is clear that (5) reduces to

$$
\begin{equation*}
S\left(k^{2}\right) \prod_{j=0}^{\infty} S^{p-1}\left(k^{2 p j}\right) \equiv 1(\bmod p) \tag{9}
\end{equation*}
$$

Thus (9) is the form assumed by (1) when q is expressed in terms of k^{2}. But (9) can be verified immediately. For if $Q\left(k^{2}\right)$ denotes the left member of (9), it is clear that

$$
\begin{aligned}
Q\left(k^{2}\right) & =S^{p}\left(k^{2}\right) \prod_{j=1}^{\infty} S^{p-1}\left(k^{2 p i}\right) \\
& \equiv S\left(k^{2 p}\right) \prod_{j=1}^{\infty} S^{p-1}\left(k^{2 p i}\right) \\
& \equiv Q\left(k^{2 p}\right)(\bmod p)
\end{aligned}
$$

This evidently implies $Q\left(k^{2}\right) \equiv 1$. We have therefore an alternative proof of (1).

It is not clear how to carry out explicitly the transformation of (1) into what may be called its q-form. Put

$$
k^{2 r}=\sum_{s=r}^{\infty} a_{r s} q^{s} ;
$$

it follows from (2) that the coefficients $a_{r s}$ are rational integers. Now let

$$
\vartheta_{3}^{s}=\sum_{n=0}^{\infty} R_{s}(n) q^{n},
$$

so that $R_{s}(n)$ is the number of representations of n as a sum of s squares. Then it is easily seen that (1) implies the following two results.

$$
\begin{align*}
& R_{2(p-1)}(n)+\sum_{s=1}^{n} R_{2(p-1)}(n-s) \sum_{r=1}^{s}\binom{m}{r}^{2} a_{r s}(\bmod p) \quad(n \geqq 1), \tag{10}\\
& R_{2}(n) \equiv R_{2}(n / p)+\sum_{n=s+p t} R_{2}(t) \sum_{r=1}^{s}\binom{m}{r}^{2} a_{r s}(\bmod p) . \tag{11}
\end{align*}
$$

If we recall the familiar formulas

$$
k^{1 / 2}=\vartheta_{2} / \vartheta_{3}, \quad k^{\prime 1 / 2}=\vartheta_{0} / \vartheta_{3},
$$

where

$$
\vartheta_{0}=\sum_{-\infty}^{\infty}(-1)^{n} q^{n^{2}}, \quad \vartheta_{2}=\sum_{-\infty}^{\infty} q^{(2 n-1)^{2} / 4}
$$

it is easily verified that (1) implies

$$
\begin{align*}
\vartheta_{2}^{2(p-1)} S\left(k^{-2}\right) & \equiv 1(\bmod p), \tag{12}\\
\vartheta_{0}^{2(p-1)} S\left(k^{2}\right) & \equiv k^{\prime p-1}(\bmod p) . \tag{13}
\end{align*}
$$

Since

$$
S(x)=(1-x)^{m} P_{m}\left(\frac{1+x}{1-x}\right)
$$

where $P_{m}(x)$ is the Legendre polynomial, (13) can also be written in the form

$$
\begin{equation*}
\vartheta_{0}^{2(p-1)} P_{m}\left(\frac{1+k^{2}}{1-k^{2}}\right) \equiv 1(\bmod p) . \tag{14}
\end{equation*}
$$

Similarly, (1) and (12) can also be written in terms of the Legendre polynomial.

Finally, since

$$
\left(\vartheta_{0} \vartheta_{2} \vartheta_{3}\right)^{4}=2^{4} q \prod_{1}^{\infty}\left(1-q^{2 n}\right)^{12},
$$

it follows from (1), (12) and (13) that

$$
\begin{equation*}
\left\{q \prod_{1}^{\infty}\left(1-q^{2 n}\right)^{12}\right\}^{(p-1) / 2} S^{3}\left(k^{2}\right) \equiv\left(k k^{\prime}\right)^{p-1}(\bmod p) . \tag{15}
\end{equation*}
$$

References

1. L. Carlitz, Arithmetic properties of elliptic functions, Math. Z. vol. 64 (1956) pp. 425-434.
2. E. Lucas, Théorie des nombres, Paris, 1891.

Duke University

