
ON CUBIC FORMS PERMITTING COMPOSITION

R. D. SCHAFER1

Let A be a finite-dimensional separable alternative algebra over a

field F. Then A = AX@ • • • ®Ar, where each simple ideal At is cen-

tral simple over its center Zit and Zt is a separable extension of F of

degree dt. Take Ai to be associative for x=l, • • • , 5 (O^s^r) and

not associative otherwise. The algebras Ai (i— 1, • • • , s) have di-

mension m2 over Zi, and it is well-known [l, §8.11] that the principal

norm re.-(xi) for x» in Ai is a (homogeneous) form of degree mtdi over

F satisfying «i(x,-y,-) = ret(x,)re,(y,). The Cayley algebras

^4,- (i = 5 + l, • • • , r) are of degree rej» = 2 and dimension 8 over Zi,

and there is similarly a norm re,-(x,) = NziiF(nAiizi(xi)) of degree twA

= 2^i satisfying re,-(x,-yi) = «,-(x,-)m,-(3\-). Let x = Xi+ • • • +xr for x,- in

Ai, and define

(1) TO   =   k(Xl)]'1  •   •   •   [nr(Xr)]fr

for arbitrary positive integers /,-. Then N(x) is a form of degree re

where

r

(2) re = Z/^i^' (w« = 2 for i = 5 4- 1, • • • , r).
i-i

Also A^(x) permits composition. That is,

(3) N(xy) = A^(x)A(y).

The dimension of A over F is

a r

(4) dim v4 = Z mdi + 8  Z  dt.
I-l l=»S+l

Ignoring the question of inseparability by assuming characteristic

5^2, we may state the principal fact about quadratic forms permit-

ting composition [2; 7; 6] as follows. Let A he a nonassociative alge-

bra (of possibly infinite dimension) over F of characteristic s^2, and

assume2 that A has a unity element 1. If N(x) is a nondegenerate

quadratic form on A permitting composition, then A is a finite-

dimensional separable alternative algebra over F and A^(x) is given by
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2 An easy modification suffices in case A has no unity element [7, p. 957; 6,

p. 56]. See also the remark at the end of this paper.
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(1) with n = 2 in (2). This limits the possibilities severely, and by

(4) one has the classical restriction: the dimension of A is 1, 2, 4, or 8.

Conversely, any such quadratic norm form is nondegenerate.

A plausible conjecture is that any (possibly infinite-dimensional)

algebra A with 1 over F of characteristic 0 or p>n, on which a non-

degenerate3 form Nix) of degree n and permitting composition is de-

fined, is a finite-dimensional separable alternative algebra with A^(x)

given by (1). Then (2) and (4) would give the restrictions on the

structure and dimension of A.

In this paper we study cubic forms permitting composition, and

prove the following

Theorem. Let A be a finite-dimensional nonassociative algebra with

1 over F of characteristic 9*2, 3. A necessary and sufficient condition

for the existence of a nondegenerate cubic form Nix) on A permitting

composition is that A be a separable alternative algebra for which Nix)

is given by (1) with n = 3 in (2); that is, one of:

(i)  7^1     '   (withfi=3 in (I)),
(ii) a cubic field over F,

(iii) a central simple associative algebra of dimension 9 over F,

(iv) Fei®B where B is an algebra (with unity element 1— ei) on

which a nondegenerate quadratic form permitting composition is de-

fined; that is, one of:

(iv, a)  Fd®Fe2        (with/i = 1, ft = 2 in (1)),
(iv, b) Fei®Fe2@Fez,

(iv, c)   Fei@Z, Z a quadratic field over F,

(iv, d) Fei®Q,        Q a (generalized) quaternion algebra over F,

(iv, e)   Fei @C, C a Cayley algebra over F.

The possible dimensions for A are 1, 2, 3, 5, and 9.

Sufficiency is immediate, and we are concerned throughout the

paper with proving the necessity. Our method (a reduction to trace-

admissible algebras) makes essential use in Lemma 2 of the assumed

finite dimensionality of A.

1. Cubic forms. Let V be a vector space (of possibly infinite

dimension) over a field Fof characteristic 7*2, 3. A mapping x-+N(x)

of V into F is called a cubic form on V in case N(ax) =a3N(x) lor all

aEF and x£ V, and

(x, y, z) = —[N(x + y + z) - N(x + y) - N(x + z) - N(y + z)
6

+ N(x) + N(y) + N(z)]

3 For the definition, see footnote 4.
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is trilinear. Then A^(x) = (x, x, x). We shall say that a symmetric tri-

linear form (x, y, z) and its associated cubic form are nondegenerate

in case (x, y, z) =0 for all y, z in V implies x = 0.4

Assume that a cubic form N(x) is defined on a nonassociative

algebra A over F, and that A7x) permits composition: (xy, xy, xy)

= (x, x, x)(y, y, y). We linearize this in x to

(5) (xiy, x2y, xzy) = (xi, x2, XaWy),

and linearize (5) in y to the fundamental relationship

(xiyi, x2y2, x3y3) + (xjjj., x2y3, x3y2) + (xry2, #2yi, »3V3)

(6) + (xiy2, x2y3, x3yi) + (xiy3, *2yi, a^) + (xry3, x2y2, x8yi)

= 6(xi, xt, x3)iyi, y2, y3).

Clearly (6) is equivalent to (3) when the characteristic is 9*2, 3. Also

(6) implies

(7) (xyi, xy2, xy3) = Ar(x)(yl, y2, y3).

Assume that A contains 1. Define a linear form x—»7\x) on 4 by

T(x) =3(x, 1, 1) and a quadratic form x—><2(x) =3(x, x, 1). We derive

a number of consequences of (6) for future use. Put xi=x, x2 = y,

x3 = z, yi=a, y2=y3=l in (6) to obtain

(8) ixa, y, z) + (x, ya, z) + (x, y, za) = (x, y, z)T(o).

That is, a right multiplication Ra on ^4 leaves (x, y, z) invariant if

r(o) = 0. Symmetrically,

(9) iax, y, z) + (x, ay, z) + (x, y, az) = T(a)(x, y, z).

Then (8) and (9) imply

(10) i[x, a], y, z) + (x, [y, a], z) + (x, y,[z, a]) = 0

so that Ra — La leaves (x, y, z) invariant for every a in A.

Replace x by x2 and put a = x in (8) and (9) to obtain

(11) (x2x, y, z) + (x2, yx, z) + (x2, y, zx) = (x2, y, z)T(x)

and

(12) (xx2, y, z) + (x2, xy, z) + (x2, y, xz) = r(x)(x2, y, z).

Replace x by x2 and put a = x2 in (9) to obtain

4 More generally, if F has characteristic 0 or p>n, and if iV7) is a form of degree

n with associated »-linear form (xL, xi, ■ ■ ■ , xn) obtained by polarization, we shall

say that (xi, %,■••, x„) and N(x) = (*, #,•••, a) are nondegenerate in case

(xi, xi, • ■ ■ , x„) =0 for all *«,•••,*« in V implies *i = 0.
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(13) (x2x2, y, z) + (x2, x2y, z) + (x2, y, x2z) = T(x2)(x2, y, z).

Put 3 = 1 in (9) and rewrite to obtain

(14) (xy, z, 1) + (y, xz, 1) + (y, z, x) = T(x)(y, z, 1).

Now z=l in (14) implies

(15) T(xy) = T(x)T(y) - 6(x, y, 1),

so that, in particular,

(16) 7\x2) = [7\x)J2 - 2Q(x).

Also (15) implies

(17) T(xy) = T(yx) for all x, y in A.

Moreover, (15) and (14) imply

(18) T((xy)z) = T(x(yz)) for all x, y, z in A.

For T((xy)z) — T(x(yz)) = T(xy)T(z) — 6(xy, z, 1) — T(x)T(yz)

+ 6(x, yz, 1)= -6(x, y, l)T(z)-6(xy,z, l)+6T(x)(y,z, l)+6(x, yz, 1)

= 6[ - (x, y, l)T(z) + (y, xz, 1) + (y, z, x) + (x, yz, 1) ]. Using the rela-

tionship which results from interchange of x and z in (14), we have

T((xy)z)-T(x(yz))=6[([x, z], y, l) + (x, [y, z], l)]=-6(x, y, [l,z])

= 0by (10).
Next put xi = x2, x2 = x3 = x, yi=y, y2 = z, ys= 1 in (6); using (7), we

have

(19) (x2y, xz, x) + (x2z, xy, x) = N(x)T(x)(l, y, z) — N(x)(x, y, z).

Also, putting xi=yi=y2 = x, x2=y, x3 = z, j3 = l in (6) we have

(20) (x2, yx, z) + (x2, y, zx) = Q(x)(x, y, z) - N(x)(l, y, z)

by (5). Symmetrically, we have

(21) (x2, xy, z) + (x2, y, xz) = Q(x)(x, y, z) - N(x)(l, y, z).

Put xi=yi=x, x2 = x2, #i — l, y2 = y, yz—z in (6) to obtain

(x2, x2y, z) + (x2, x2, z, y) + (xy, x2x, z) + (xy, x2z, x)

+ (xz, x2x, y) + (xz, x2y, x) = 6(x, x2, l)(x, y, z).

Finally put Xi = x2 = x, yx = y2 = y, x3 = y3 = 1 in (6) to obtain

(23) Q(xy) + 6(xy, x, y) = Q(x)Q(y).

Assume henceforth that N(x) is nondegenerate. Then (3) implies

N(l) — 1, and therefore T(1)=Q(1)=3. Also x3 is uniquely defined

(x2x = xx2) for any x in A, and
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(24) x3 - 7\x)x2 + Qix)x - Nix)l = 0;

that is, A is a cubic algebra. For (11) and (20) imply (x2x—F(x)x2

+ Qix)x — Nix)l, y, z)=0 for all y, z in A, or x2x— T'x)x2+Qix)x

-A7(x)l=0. Similarly (12) and (21) imply xx2- r(x)x2 + (?(x)x

— A/(x)l=0, so that x2x = xx2 and (24) holds. Also

(25) x2x2 = x3x( = xx3) for x in A.

For (13) and (22) imply (x2x2—T(x2)x2, y, z) = (xy, 2, x3) + (y, xz, x3)

+ (x2z, xy, x)+(x2y, x, xz) — 6(x, x2, l)(x, y, z). Now (xy, z, x3)

+ (y, xz, x3) = ((2(x)x2-AT(x)x, y, z) by (24), (21), (8), and (14). Also

6(x, x2, l)=<2(x)r(x)-3A7(x) by (15) and (24). Hence (16) implies

(26) x2x2 = {[r(x)]2 - <2(x)}x2 + [Nix) - (Kx)7\x)]x + N(x)T(x)l.

Then (24) and (26) imply (25). Hence A is power-associative by

Lemma 1. Any cubic algebra in which (25) is satisfied is power-

associative.

Proof. Let x2x = xx2 = ax2+/3x-f-7l, and define x* = xi_1x = a,x2

+p7x+7;l. It is well-known that any quadratic algebra is power-

associative, so we may assume that x2, x, 1 are linearly independent.

Then «i = 0, /3i = l, 7i = 0, aj = a,._1a+j8,-_i, p7 = a,-i/3+7;_i, 7i = a<_i7,
and it is readily established by induction on j and use of (25) that

x'x'= x*"*~J'

2. Trace -admissibility. Under the assumptions of §1 we have seen

that A is a power-associative algebra with 1 on which a linear form

Tix) is defined satisfying (17) and (18). Then the bilinear form

5(x, y) = Tixy) is an admissible trace function [4] for ^4:J5(x, y)

= Biy, x), Bixy, z)=jB(x, yz), Bie, e)9*0 for any idempotent e,

Bix, y) =0 if xy is nilpotent. For we can prove Tie) 9*0 for any idem-

potent e and 7\z) = 0 for any nilpotent element z.

Assume e?*l since 7\1) =3?*0. Then e and 1 are obviously linearly

independent and

(27) Qie) - Tie) + 1 = 0, N(e) =0 il e 9* I,

by (24). Then (16) and (27) imply

(28) either Tie) = 1 or Tie) = 2 if e 9* 1.

Now z = 0 implies T(z) = AT(z) = 0. Then zr = 0, r > 1, implies AT(z) = 0

by (3). If z2 = 0, but z^0, then (24) implies (?(z)=0 so that 7"(z)=0

by (16). We may assume therefore that z29*0, and let r be the least

exponent such that zr = 0 izr~19*0, r>2). Then z""^1 and zT~2 are
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obviously linearly independent, so that (24) implies T(z)=Q(z)=0

(giving 2s = 0).

Also B(x, y) is nondegenerate on A. For, if B(x, y)=0 for every

y in A, then B(x, l) = T(x)=0. Also B(x, yz)=0 for all y, z in A,

implying B(xy, z)=B(x, y)T(z)—6(xy, z, 1) = — 6(xy, z, 1)=0 by

(15). Interchange y and z to obtain (xz, y, 1) =0, so that (x, y, z) =0

for all y, z in A by (14). Then x = 0.

If we now assume that A is of finite dimension over F, we can apply

[4]5 to obtain

Lemma 2. Let A be a finite-dimensional nonassociative algebra with

1 over F of characteristic ^2, 3. There is a nondegenerate cubic form

N(x) on A permitting composition only if A is a separable algebra

A=AX@ ■ ■ ■ @ Ar in which each simple ideal A i is one of the following:

a (commutative) Jordan algebra, a quasiassociative algebra [3, Chapter

V], or a flexible quadratic algebra (with the attached commutative algebra

A^ a simple Jordan algebra of degree 2).

We shall first sharpen this result considerably in case r>l. Write

x = xi+ • • • +xr, Xi in Ai, and 1 =ex+ ■ ■ ■ +eT where e,- is the unity

element of Ai (e^l in case r>l). Consider Ni(x/) — N(xi — e,--fT).

Then N(x)=Nx(xx) ■ ■ • Nr(xr) and

(29) Ni(xiyi) = Ni(xi)Ni(yi).

For 2Vi(xi) • • • N,(x,) = N(xx - ex + 1) • • • N(xr - er + 1)

= ^((xi — ex + 1) ■ ■ ■ (xr — eT + 1))        (associative       product!)

= N(xx+ • ■ ■ +xr-(ex + • ■ • +er) + l)=N(xx + ■ ■ ■ +xr),    while

Ni(xiyi)=N(xiyi-ei + l) = N((xi-ei + l)(yi-ei+l))=Ni(xi)Ni(yi).

Now

Ni(xt) = (xt — et + 1, Xi — et + 1, x,- — e< + 1)

= N(x{) — 3(xi; Xi, e/) + Q(x/) + 3(xi, et, ei) + Q(e{)

+ T(Xi) - T(ei) - N(et) + N(l) - 6(xi; a, 1).

If et^l, then N(x{) =N(xlei) = N(x%)N(ei) =0 and Q(e/) - T(e{)

+ N(1)=0 by (27). Put a = d, x=y = xit z=l in (8) and x = x»,

y = ei in (23) to obtain 2Q(x/)+3(xi, eiy e/)=Q(xi)T(ei) and Q(x./)

+ 6(xi, et, et) =Q(xi)Q(ei). Then (27) implies

(30) 2Q(x/) = Q(xi)T(et),       (xt, a, e/) = 0 if e% ̂ 1.

6 It is not necessary to assume characteristic ^5. One can see from [8] that this

restriction in [4] may be replaced by power-associativity in any scalar extension Ak

of A. But our identity (6), being linear in each argument, and being equivalent to (3),

insures that all of our results hold for Ak where K is any extension of F. In particular,

since A is semisimple by [4], we know that Ak is semisimplei that is, A is separable.
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Put a = xit x = y = et, z=l in (8) and x = x,, y = e,- in (15) to obtain

6(x,-, e^ l)+3(e,-, e,, x)=Qie/)Tixi) and T(x.) = r(x,) F(et) — 6(x,-, e,, 1).
Then (27) implies

(31) 6(x,-, ei, 1) = Qie{)Tixi),        (e,-, c,-, x<) = 0 if et 9* 1.

Hence A^,-(x,) = <2(x,) + r(x,)-(2(e,)r(xi) if e.-^l. By (28) there are

two cases. If 7t>,-) = l, then (?(x<)=0 by (30) and A7(xf) = TCx,-). If

r(e,)=2, then (?(e,-) = l by (27) and A7(x<) =(?(*<)• Thus, if r>l, we

can order the simple .4j so that Tie/) = 1 for *=1, • • • , t, Tie/) = 2

for i = t + 1, • • • , r (0 ^ * g r). Then A7(x) = ATi(xi) • • • A^r(xr)

= T(xi) • • • r(X()<2(x(+i) • • • QixT) isol degree t + 2ir — t)=2r — t = 3.

The only possibilities are r = 2, t = l, and r = < = 3. That is, if A is not

simple, then either A=Ai®A2 with 7>i) = l, A7,(xi) = r(xi), r(ea)

= 2, <372) = 1, Ar2(x2)=<2(x2), or ^=^i©^20^3 with r(e,) = i,

Niixi) = Tix/) for t=l, 2, 3.

Consider the situation where iV,.(xj) = r(x<). By (29) we have

5(x,-, y) = r(x,y) = Tixty,) = Tixi)Tiyt) = Tixi)Tie(y) = Tix/jBid, y)

= 5(r(x,)e„ y) for every yG^4. Hence x,= r(xi)e,- for every x,- in -4,-,

or ^4 j = Fe,-. Thus, if A is not simple, we have case (iv) of our Theorem

as soon as we verify that Af2(x2) =C!(x2) is nondegenerate on A2. Sup-

pose that

(Xi, y2) = — [Qix2 + y2) - Qix2) - Qiy2)] = 3(x2, y2, 1) = 0

for all y2G^2- Then 0 = 2(x2, e2)=6(x2, e2, l)=Qie2)Tixt) = Tix2) by

(31), and J3(x2, y) = T(x2y) = F(x2y2) = F(x2)F(y2) — 6(x2, y2, 1)

= — 2(x2, y2) =0 for all yEA by (15), implying x2 = 0.

3. Simple algebras. We are left with the case where A is simple.

Let K he a splitting field for A. Since all of our results are valid6 for

Ak, we know that one of the following is true: Ak is simple (implying

that A is central simple over F), Ak = Kci®S (implying, since the

simple components of Ak are all isomorphic, that S = Ke2 and that

A is a quadratic field over F, a possibility to be eliminated in Lemma

3), or AK = Kei®Ke2®Ke3 (implying that A is a cubic field over F,

which is case (ii) of the Theorem).

Suppose that A is central simple, and that K is the algebraic closure

of F. Since each element of Ak satisfies an equation of degree 3

(or lower) with coefficients in K, Lemma 2 implies that Ak is one of:

(a) a split central simple (commutative) Jordan algebra of degree 3

(dimension 6, 9, 15, or 27); (b) a split central simple quasiassociative

6 See footnote 5.
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algebra of degree 3; (c) a split central simple flexible quadratic alge-

bra (with the attached commutative algebra A # a split central simple

Jordan algebra of degree 2, dimension ^3); (d) Kl (implying A =F1,

case (i) of the Theorem).

In (a) and (b) we may represent the elements of Ak by certain

3X3 matrices; in each case the set S of all 3X3 symmetric matrices

with elements in K is included. Multiplication in AK is defined by

xy =Xx o y + (l— X)y o x for some X£i£ (X= 1/2 for the algebras (a))

where xo y denotes the ordinary matrix product. Powers of elements

of 5 coincide with ordinary matrix powers. Consider

T    0    0] fO    1    0

e =   0   0    0  ,        z =    1    0   0

0    0    lj 10   0    0.

in 5. Now e^l is an idempotent, and x = e(z — e) =ez — e = Xe o z

+ (1 — X)z o e — e is the matrix

-1        X      0

x =    1 - A      0      0  .

.0 0-1.

But x satisfies the equation x3 + 2x2 + (X2-X + l)x + (X2-X)l =0 and,

ifX^O, 1, no equation of lower degree. Hence N(x) =~k — \2 = N(e(z — e))

= N(e)N(z — e) —0 by (27), a contradiction unless X = 0 or X= 1. This

eliminates (a) and leaves for (b) only an associative algebra. For the

corresponding algebras A we have case (iii) of our Theorem.

Quadratic fields and possibility (c) above are eliminated in

Lemma 3. A nondegenerate cubic form N(x) permitting composition

cannot be defined on a quadratic field A over F of characteristic 7^2, 3,

or on an algebra A over F for which the attached commutative algebra A +

is a central simple Jordan algebra of degree 2.

Proof. For x in A satisfies x2 = /(x)x —«(x)l with t(x), n(x) in F,

t(al)=2a, n(al)=a2. Also A = Fl+M where M consists of all x0

satisfying t(x0)=0. II A is a quadratic field, M contains ua with

ul=yl = — re(w0)l, y a nonsquare in F. In the other case, there is a

nondegenerate quadratic form/ [5, §13] on M of dimension 2:2 such

thatXq =/(x0) 1 = -re(x0)l forx0Glf. Now (24) implies [T(x)—t(x)]x2

+ [n(x) - Q(x)]x + N(x)l = 0. Write L(x) = T(x) - t(x). Then

[n(x)-Q(x)+L(x)t(x)]x+[N(x)-L(x)n(x)]l=0. Whether or not

x€£Fl, we have Q(x) =n(x)+L(x)t(x). Then (16) implies w(x)

= L(x)[t(x)—L(x)], so that re(x0) = - [i(x0)]2 for all x0EM. Thus
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y = — re(wo) = [£(«<>) ]2, a contradiction, and the nondegenerate quad-

ratic form /(xo) = — re(x0) = [i(x0)]2 is the square of a linear form

L(x0) on M, implying that M is l-dimensional, a contradiction. This

completes the proof of Lemma 3 and of the Theorem.

Remark. If A does not contain 1, it is possible to pass easily (as in

[7, p. 957; 6, p. 56]) to an isotopic algebra A* with 1. Briefly:

N(u)^0 implies by (5) and (7) that x—>xa = xF„ and x—>ax = xLa are

(1-1) for a = u3/N(u). By finite-dimensionality we can define multi-

plication in A* by x * y = (xR^/1)(yL~1). Then a2 is a unity element

for A* and N(x * y) = N(x)N(y). Thus, without assuming \EA, we

have dim A = l, 2, 3, 5, or 9.
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