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A noncommutative Jordan algebra was defined by R. D. Schafer

[7] as an algebra satisfying the Jordan identity

(1) (x2y)x = x2(;yx)

and the flexible law

(2) (xy)x = x(yx).

In this paper we replace (2) by the weaker2 hypothesis

(3) x2x = xx2

and consider algebras satisfying (1) and (3).

In §1 we show that such algebras of characteristic not 2 or 3 are

strictly power-associative, and in §2 we establish several properties

of the submodules Ae(\) of these algebras. In the last section we use

these results and follow the arguments in [6] to show the existence

of an identity element in the finite dimensional semi-simple case.

Then the results of [6] and [7] allow us to obtain the following

theorems.

Theorem 1. Every finite dimensional semi-simple algebra of char-

acteristic not 2 or 3 satisfying (1) and (3) is a noncommutative Jordan

algebra with identity element, and thus is the direct sum of simple sub-

algebras.

Theorem 2. A finite dimensional simple algebra of characteristic not

2 or 3 satisfying (1) and (3) is either a icommutative) Jordan algebra, a

quasi-associative algebra, or an algebra of degree at most 2.

1. Let A be an algebra of characteristic p not 2 or 3 satisfying (1)

and (3). Identity (3) yields [l, Lemma 2] and in particular x3x = xx3.

Since (1) implies x3x = x2x2 we have xn~axa = xn-1x for all a<n, n = 3

or 4. Now there are two cases.

Case 1, p9*2, 3 or 5. We have [l, Lemma 4] so that, assuming

xaxb = xa+i for all a+b<n and any «^5, we get
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2 An algebra satisfying (1) and (3) but not (2) is given by basis e, u, v, w with

e2 = e, ue = u, vw= —wv = u, and all remaining products zero.
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1
(4) x2xn"2 = xn~1x -\-(n — 3)[xn_1, x].

Now letting y = x"~3 in (1) and using (4) yields (re — 3) [xn~\ x]=0.

Since p9^3 this gives us [x*p_1, x] =0 for all k^l, and combining this

result with [l, Lemmas 2 and 4] yields xB_0x0 = xn-1x for all Ka<n

so that A is power-associative.

Case 2, p = S. Since the base field has at least five elements, a sub-

stitution of x+Xx2 for x and of x for y in (1) yields x3x2 + 2x4x = x2x3

+ 2x3x2. Letting y = x2 in (1) yields x4x = x2x3, so, combining these

two results, we have [x3, x2]=0. But by [l, Lemma 2] we see that

this implies [x4, x]=0. We also have that (1) implies x6x = x4x2 and

[l, Lemma 2 ] yields x2x4 = x4x2. Thus the hypotheses of [5, Lemma 4]

are satisfied, so that (4) holds in this case also. Then [xi_1, x]=0 by

the proof of Case 1 above, and it follows that A is power-associative

from the proof above using [5, Lemma 4] in place of [l, Lemma 4].

Cases 1 and 2 above, together with an observation that (1) and (3)

are both equivalent to multi-linear identities since p>3, complete

the proof of the following result.

Lemma 1. An algebra of characteristic not 2 or 3 satisfying (1) and (3)

is strictly power-associative.

However, such algebras of characteristic p = 2 or p = 3 need not be

power-associative. In the case p = 2 this is easily seen from the algebra

constructed in [l, p. 25], while for p = 3 this is shown by the example

in [5, §5] taking p = 3 and re = 2.

2. Throughout this section A will be an algebra of characteristic

not 2 or 3 which satisfies (1) and (3). The notations will be those of

[6 ] except that the multiplication * of A + is defined by x * y = xy+yx,

and, further, e will always be an idempotent.

Observing that e/2 is an idempotent of the commutative algebra

A+, and that Af/2(K) = A,(k) ior X = 0, 1 and 2, we are able to state

[2, Theorem 2] in the following form. Ae(2) and Ae(0) are orthogonal

subrings of A+, Ae(l) * Ae(l)EAe(2)+A.(0), and A.(\) * A,(l)

EAe(l) +Ae(2 -X) for X = 0 or 2. In [2 ], Albert also showed that the

submodules^48(2) and v4e(0) of A are orthogonal and that ea2 = a2e = a2

and ea0 = a!>e — 0 for all a2EAe(2), aaEAe(0). These results are basic

to the subsequent development.

Linearization of (1) yields

(5) [xz + zx, y, w] + [xw + wx, y, z] + [zw + wz, y, x] = 0
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where of course [x, y, z] = ixy)z — xiyz). Letting w = z = e and x = xA

in (5) we have

(6) \[xx, y, e] + [e, y, x\] = 0.

Lemma 2. e-A.(l)CAt(l), and At(l)-eQAe(l).

Proof. Letting x = e and y = yi in (1) we find (ey/)e = e(yie). Thus

eyx * e = eiyie+eyi)=eyi so that eyiEAe(l) by definition. Observing

that y\e = e * yi — eyi completes the proof.

Lemma 3. Ae(0)-Ae(0)EAe(0)+Ae(l).

Proof. Let y = yo and A = 0 in (6), obtaining 0 = (ey0)x0 = e(yoXo).

Thus e[y0x0]2= [yoX0]2 = 0.

Now we linearize (3) to find

(7) [e, y * z] + [z, e * y] + [y, e * z\ = 0.

Noting that e*x =2[x]2+[x]l and letting y = y2+yi+yo and

s = z2+Zi+Zo, we compute [z, e * y] and [y, e * z] in terms of com-

ponents, and substituting in (7) gives

(8) [y * z, e] = [zi, y2] + [yu z2] + [z0, yi] + [y0, »i].

Lemma 4.3 At(l) -Ae(\)CAe(l) +Ae(2-X) and

Ae(\)-Ae(l) E Ae(l) + Ae(2 - X) for X = 0 or 2.

Proof. We observe that [x, e]= [[x]i, e]. Now let z = zi and y = yo

in (8) to obtain [y0 * Zi, e]= [y0, Zi]. Therefore [y0, Zi]EAe(l). But

since A+ is strictly power-associative, yo * ZiEAe(l)+A„(2). Now

since y0zi = 2_1(3'o * Zi+ [yo, Zi]) and Ziy0 = 2_1(yo * Zi— [yo, Zi]), both

y0Zi and Ziyo are elements of ^4e(l)-f-^4e(2). A parallel argument com-

pletes the proof of the lemma.

Turning to fourth powers, we find that a linearization of x3x = x2x2

yields

[(x * e)z + (z * e)x + (z * x)e]e + [(x * e)e + ex]z + [(z * e)e + ez]x

= (x * e) * (z * e) + (x * z) * e.

In the case that x = x0 and z = Zi this identity becomes

(9) (zi*o)e + ZxXo = (x0 * Zi) * e — [(zi * x0)e]e.

This identity together with the previous lemmas gives us the neces-

sary machinery to parallel the methods of [6], and in the next section

8 It may be noted that the only use made of (1) in this lemma, as well as in much

of the rest of the paper, was that in combination with (3) it implied strict power-

associativity and Lemma 2.
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we do so obtaining our Theorems 1 and 2.

3. Keeping our previous notations, we proceed to consider the

ideals in A and A+ generated by the set A,(1)+A,(0). Defining N

as the set of all sums of elements of the form [ziyi]2 and [ziS0]2 we

will show that both these ideals are precisely the set N+Ae(l)

+Ae(0).

First we observe that a substitution of 5o for y in (6) with X = 1

yields [xiS0]2= [s0Xi]2 so that N contains all terms of the form [soXi]2

as well.

Lemma 5. N is contained in the ideal in A+ generated by Ae(l)

+^4e(0), and in particular [yiXi]2 = [eyx * xx]2.

Proof. We show that 2[zix0]2= [zx * x0]2 and [yiXi]2= [eyx * xx]2.

The Ae(2) component of the right member of (9) is just [zx * x0]2

since [(zi * x0) * e]2 = [zi * x0]2 * e = 2 [zx * x0]2 and [((zx * x0)e)e]2

= ([zx * x0]2e)e= [zi * x0]2. But the ^4«.(2) component of the left mem-

ber is 2[ziX0]2 which is the first desired relation. Now let X = l and

y = yx in (6) obtaining xx(yxe)+e(yxxx) — (xxyx)e = (eyx)xx, so that

xxyx+e(yxxx)-(xiyi)e = eyx * xx, and thus [yiXi]2= [eyx * xx]2.

Lemma 6. The ideal in A generated by Ae(l)+Ae(0) is just the set

N+Ae(l)+Ae(0).

Proof. We obviously need only show containment of the ideal in

the set. By the definition of N and by Lemmas 3 and 4 we have

A -Ae(0), Ae(0) -A, A -Ae(l) and A.(I) -A are all in iV+i4.(l) +^(0).
It remains to show that Ae(2)-N, and N-Ae(2) are contained in

N+Ae(l)+Ae(0). We complete this task, and thus the proof, in the

four following cases.

Case 1, to show x2[yxzi]2EN+Ae(l)+Ae(0). We follow the proof

of [6, Lemma 3.3] to linearize x3x = x2x2, consider Ae(2) components

and obtain 2[x2(yi * Zi)]2— [(yx * zx)x2]2EN. Then we linearize (3) to

find   [x2,  yi * zx] + [yx,  x2 * zx]+ [zx,  x2*yi]=0.   Thus   [x2(yx * zx)]2

— [(yx * zx)x2]2EN, so we have [x2(yx * zx)]2EN, and substituting eyx

for yx this becomes [x2(eyx * z/)}2EN, but this is just [x2[eyi * Zi]2]2

EN. Now by Lemma 5 x2[yiZi]2 = x2[ey1 * Zi]2GA/'+-4e(l)+^4e(0).

Case 2, to show [yiZi]2x2GA^+^4e(l)+-4e(0). We proceed as in

Case 1 except that from the relations [x2(yx * zx)2EN and [x2(yi * zx) ]2

— [(yx * zx)x2]2EN we now derive [(yx * zx)x2]2EN.

Case 3, to show x2[ji50]2GA7'+^4e(l)+^4e(0). Let w = e, x = x2,

y=yx, and z = s0 in (5) to obtain (x2yx)s0 = x2(yis0). The Ae(2) com-

ponent of the left member is in N by Lemmas 3 and 4, and thus

[x2[yxso]2]2EN so that x2[yis0]2EN+Ae(l) +Ae(0).
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Case 4, to show [yi50]2x2GAr+^4,(l)+^4e(0). Since we have Case

3, it is certainly enough to show [yi50]2 * x2EN. In A+ we have [3,

Identity 8]4 which is just [yi * s0]t * x2 = 2[[yi * x2]i * ,?o]2, and the

right member is in N. Since [yi50]2= [soyi]2 as observed earlier, we

have the desired relation, [yis0]2 * x2 = 2_1[yi * s0]2 * x2EN, and com-

plete the proof of the lemma.

Thus by Lemmas 5 and 6 we see that the ideal in A generated by

Ae(l)+Ae(0) is contained in the ideal in A+ generated by the same

set.

We now suppose that A is semi-simple. As such it will contain an

idempotent. Adding the assumption that A is finite dimensional

allows us to infer the existence of a principal idempotent e. We ob-

serve that e/2 is then a principal idempotent of A+, and thus by

[3, Theorem 7]4 Ae(l)+Ae(0)ERad A+. Therefore, Ae(l)+A,(0)

generates a nil ideal in A so that Ae(l) =^4«(0) =0 by semi-simplicity,

and e is an identity element for A. The observation in [7] that in the

presence of an identity element (1) yields (2), together with [6,

Theorem 3.5], completes the proof of Theorem 1. Theorem 2 is a

direct application of [6, Theorem 4.2].

Bibliography

1. A. A. Albert, On the power-associativity of rings, Summa Brasil. Math. vol. 2

(1948) pp. 21-32.
2. -, Power-associative rings, Trans. Amer. Math. Soc. vol. 64 (1948) pp.

552-593.
3. -, A theory of power-associative commutative algebras, Trans. Amer. Math.

Soc. vol. 69 (1950) pp. 503-527.
4. L. A. Kokoris, New results on power-associative algebras, Trans. Amer. Math.

Soc. vol. 77 (1954) pp. 363-373.
5. J. D. Leadley and R. VV. Ritchie, Conditions for the power-associativity of al-

gebras, to appear in Proc. Amer. Math. Soc.

6. R. H. Oehmke, On flexible algebras, Ann. of Math. vol. 68 (1958) pp. 221-230.
7. R. D. Schafer, Noncommutative Jordan algebras of characteristic 0, Proc. Amer.

Math. Soc. vol. 6 (1955) pp. 472^75.

Princeton University

4 A reference to [3] always implies a reference to the corresponding result in [4]

for the characteristic 5 case.


