
ON LIMITS OF MODULE-SYSTEMS

johann sonner

1. Introduction. This paper is concerned with a generalization of

direct and inverse limits. The construction uses local sections de-

fined on sets of a filter »y on M. Usually, M is a directed set (see [l]).

The purpose of the order-relation is a twofold one: First it serves to

generate a filter on M, second it is responsible for the existence of

certain homomorphisms 7rf. That both tasks can be separated was

already pointed out in [2]; that only the filtering property of the

order relation is necessary for the construction of limits will be shown

here.

2. Definition of module-systems.

Definition 1. A pair (/, g), where/ is a surjective map of E into

M and g a map of M2 into 9$(E2), defines on a pair (E, M) of sets a

structure of a module-system over the ring R if it possesses the follow-

ing properties:

(SMi) For each aEM, the reciprocal image f~l (a) of a under/

is a module over R;

(SMn) For each pair (a, 8) EM2, the part g(a, B) of E2 is a sub-

module of the product-module/-1(a) X/_1(/3) over R;

(SMin) For each aEM, the set g(a, a) is a part of the diagonal of

f-i(a)Xf-K*)-
Write Ea instead of/_1(a).

Example. LetE he the sum of the sets Ea (aEM) of a direct (resp.

inverse) system of i?-modules over the directed set M and / the map

of E into M which assigns to each xEEa the element aEM. If

at^B, denote with g(a, fi) (resp. g(B, a)) the graph of the homo-

morphism tt£, if not a^B, let g(a, 8) =EaXE$. The pair (E, M) to-

gether with (/, g) forms an i?-module-system.

Definition 1 can readily be modified in order to suit any algebraic

structure, e.g. group-system, vector-space-system.

3. Construction of limit-modules. Let (E, M) be a module-system

and J? a filter on M. A function s=(S, A, E) defined on a set AE$

with values in £ is a local section of /, if the composition f o s is the

canonical injection of A into M. The section s is said to be g-admis-

sible if (a, fi)EM2 implies (s(a), s(B))Eg(a, B).

Denote the set of the g-admissible local sections of /, defined on a
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set iGli by 5(5,/, g). The relation « for some i£)}, sA=tA'2>

is an equivalence relation Rx in Sift, f, g); write 5„(fy, /, g) for

S(t$, f, g)/Rx- We shall endow 5„(fy, /, g) with the structure of a

module over the ring R.

If s=(S, A, E), t=(T, B, E) are g-admissible local sections of/,

define s+t by a-»j(a)+((a)(a£/inB), X-s by a-^>\-s(a)(aEA),

which is possible by axiom (SMi). Clearly, s+t and X-s are local sec-

tions which are g-admissible by axiom (SMu). Note, that addition

and multiplication are compatible with Rm. Therefore it is allowed to

pass to the quotient, thus obtaining a structure 9TC,*, of a module

over the ring R. We call limit ol the i?-module-system (E, M) with

respect to the filter $f and denote by lims (/, g) the quotient S„(^,f, g),

endowed with the structure 3KX.

Example. In the case of a direct system, let Jy be the filter of the

sections of the direct set M 9*0, in the case of an inverse system, take

the reduced set {M}. The module limg (/, g) is isomorphic to the

direct (resp. inverse) limit as was proved by Griffiths (see [2]).

4. Maps.

Definition 2. Let <p = (<J>, E, E') and ip = (ty, M, M') be functions.

The pair (ip, if/) is called a map of the module system (E, M) into the

module-system (E', M') over the same ring R, if it satisfies the fol-

lowing conditions:

1°. #of=fo<p;
2°.  For each pair (a, fi)EM2, (x, y)Eg(a, /3) implies (ip(x), <p(y))

3°. For each aEM, the map <pa ol Ea into E'^a), induced by ip, is

a homomorphism.

The composition of two maps is a map; for bijections (p, ip the

condition <£(<p, ip) and (ip~1, ip~x) are maps>>> is equivalent to the

condition <JC(<p, ip) is an isomorphism^.

Proposition 1. Let (<p, ip) be a map of a module-system (E, M) with

filter fy into a module-system (E', M') with filter 37 // $' is finer than

the filter on M' generated by the image of 3 under ip, then the pair

(<p, ip) induces a homomorphism (ip, if/)x of limg (/, g) into limg' (/', g').

Let s=(S, A, E) be a g-admissible local section of/ Denote by s'

the correspondence ip o s o ip~l, where xpA is the map of A into if/(A)

induced by ip. s' is a function (Axiom (SM ni)) which is a g'-admissible

local section of /'. Furthermore, s—*s' is compatible with the equiva-

lence relations Rx and R'„, thus inducing a homomorphism (<p, ip)*,ol

S„iVf,f, g) into SUWJ', g')-
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5. Induced structures. Let (E, M) be a i?-module-system and N a

part of M. Write EN for the reciprocal image of N under/, fN for the

subjective map of En into N induced by / and gN for the map of A^2

into ty(EN) induced by g. Obviously, the pair (fN, gN) defines on

(EN, N) a structure of a module-system over R, called the induced

structure. It is obviously an initial structure in the sense of N. Bour-

baki.

Theorem 1. Let (E, M) be a module-system, N a part of M, i

(resp. j) the canonical injection of En (resp. N) into E (resp. M), and

fy a filter on N. If fy' is the filter on M generated by fy, then the map

(i, j) induces an isomorphism (i, j)x of lims (fN, gN) into limg/ (/, g).

By Proposition 1, (i,j) induces a homomorphism which is bijective

because of s' =i o s (see proof of Proposition 1).

6. Cofinality. A pair (a, 8) EM2 is called g-distinguished if the

correspondence (g(a, fi), Ea, Ep) is a function.

Definition 3. A filter f$f' is cofinal for a filter f$f relative to (/, g),

if fy' is finer than fy, and if for every set AE\y, there exists a set

-BGfy satisfying the following conditions:

(CFi) For every element BEB, there exists an element aEA(~\B

such that that (a, fi) is g-distinguished;

(CFn) If (ax, fix) and (a2, B2) are g-distinguished elements of (AC\B)

XB, then there exists an element aEAC\B such that (a, ax) is g-

distinguished and the relation

g(a2, fi2) O g(a, a2) C g(fii, fin) O g (ax, fix) O g(a, ax)

holds (see diagram below).

A filterbase S3' is cofinal for f$f, if the filter fy' generated by S3', is

cofinal for f$J.

,       . _.   g(«i, Si)
g(a,a^Lai->E0l

Ea ^^ gifii, 82)

gia,a^>     gia2,fi2)  *
tLa-_-■-> tLp,

Theorem 2. Let (£, M) be a module-system, i (resp. j) the identity

of E (resp. M) and fy, fy' filters on M. If fy' is cofinal for fy, then the
map (i,j) induces an isomorphism (i,j)„ o/limg (/, g) into limg- (/, g).

By Proposition 1, (i, j) induces a homomorphism which is bijective

because of s' = s (see proof of Proposition 1).
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Theorem 3. Let (/, g), (/', g') be pairs of maps, defining structures of

R-module-systems on (E, M), $, $' filters on M and N a part of M.

Suppose, that the induced structures and filters on N exist and coincide,

and that %N (resp. %'N) is cofinal for fy (resp. £$•') relative to (/, g)

(resp. (/', g')). Then the modules lim5 (/, g) and limg- (/', g') are iso-

morphic.

Write © (resp. ©') for the filter on Af generated by {57 (resp. %'N).

Consider the diagram

lim8 (/, g) -* lim@ (/, g) «~ lim5w (Tr, gff).

The first map is induced by a pair of identities and is an isomorphism

according to Theorem 2, the second map is induced by a pair of

canonical injections and is an isomorphism according to Theorem 1.

Because the same argument holds for the primed maps, the theorem

follows.
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