ON LIMITS OF MODULE-SYSTEMS

JOHANN SONNER

1. Introduction. This paper is concerned with a generalization of direct and inverse limits. The construction uses local sections defined on sets of a filter \mathfrak{F} on M. Usually, M is a directed set (see [1]). The purpose of the order-relation is a twofold one: First it serves to generate a filter on M, second it is responsible for the existence of certain homomorphisms π^{β}_{α} . That both tasks can be separated was already pointed out in [2]; that only the filtering property of the order relation is necessary for the construction of limits will be shown here.

2. Definition of module-systems.

DEFINITION 1. A pair (f, g), where f is a surjective map of E into M and g a map of M^2 into $\mathfrak{P}(E^2)$, defines on a pair (E, M) of sets a *structure of a module-system* over the ring R if it possesses the following properties:

(SM_I) For each $\alpha \in M$, the reciprocal image $f^{-1}(\alpha)$ of α under f is a module over R;

(SM_{II}) For each pair $(\alpha, \beta) \in M^2$, the part $g(\alpha, \beta)$ of E^2 is a submodule of the product-module $f^{-1}(\alpha) \times f^{-1}(\beta)$ over R;

(SM_{III}) For each $\alpha \in M$, the set $g(\alpha, \alpha)$ is a part of the diagonal of $f^{-1}(\alpha) \times f^{-1}(\alpha)$.

Write E_{α} instead of $f^{-1}(\alpha)$.

EXAMPLE. Let E be the sum of the sets E_{α} ($\alpha \in M$) of a direct (resp. inverse) system of R-modules over the directed set M and f the map of E into M which assigns to each $x \in E_{\alpha}$ the element $\alpha \in M$. If $\alpha \leq \beta$, denote with $g(\alpha, \beta)$ (resp. $g(\beta, \alpha)$) the graph of the homomorphism π_{α}^{β} , if not $\alpha \leq \beta$, let $g(\alpha, \beta) = E_{\alpha} \times E_{\beta}$. The pair (E, M) together with (f, g) forms an R-module-system.

Definition 1 can readily be modified in order to suit any algebraic structure, e.g. group-system, vector-space-system.

3. Construction of limit-modules. Let (E, M) be a module-system and \mathfrak{F} a filter on M. A function s = (S, A, E) defined on a set $A \in \mathfrak{F}$ with values in E is a *local section* of f, if the composition $f \circ s$ is the canonical injection of A into M. The section s is said to be g-admissible if $(\alpha, \beta) \in M^2$ implies $(s(\alpha), s(\beta)) \in g(\alpha, \beta)$.

Denote the set of the g-admissible local sections of f, defined on a

Presented to the Society, January 21, 1959; received by the editors February 8, 1959.

set $A \in \mathfrak{F}$, by $S(\mathfrak{F}, f, g)$. The relation \ll for some $A \in \mathfrak{F}$, $s_A = t_A \gg$ is an equivalence relation R_{∞} in $S(\mathfrak{F}, f, g)$; write $S_{\infty}(\mathfrak{F}, f, g)$ for $S(\mathfrak{F}, f, g)/R_{\infty}$. We shall endow $S_{\infty}(\mathfrak{F}, f, g)$ with the structure of a module over the ring R.

If s = (S, A, E), t = (T, B, E) are g-admissible local sections of f, define s+t by $\alpha \rightarrow s(\alpha) + t(\alpha)(\alpha \in A \cap B)$, $\lambda \cdot s$ by $\alpha \rightarrow \lambda \cdot s(\alpha)(\alpha \in A)$, which is possible by axiom (SM_I) . Clearly, s+t and $\lambda \cdot s$ are local sections which are g-admissible by axiom (SM_{II}) . Note, that addition and multiplication are compatible with R_{∞} . Therefore it is allowed to pass to the quotient, thus obtaining a structure \mathfrak{M}_{∞} of a module over the ring R. We call limit of the R-module-system (E, M) with respect to the filter \mathfrak{F} and denote by $\lim_{\mathfrak{F}} (f, g)$ the quotient $S_{\infty}(\mathfrak{F}, f, g)$, endowed with the structure \mathfrak{M}_{∞} .

EXAMPLE. In the case of a direct system, let \mathfrak{F} be the filter of the sections of the direct set $M \neq \emptyset$, in the case of an inverse system, take the reduced set $\{M\}$. The module $\lim_{\mathfrak{F}} (f, g)$ is isomorphic to the direct (resp. inverse) limit as was proved by Griffiths (see [2]).

4. Maps.

DEFINITION 2. Let $\varphi = (\Phi, E, E')$ and $\psi = (\Psi, M, M')$ be functions. The pair (φ, ψ) is called a map of the module system (E, M) into the module-system (E', M') over the same ring R, if it satisfies the following conditions:

- 1°. $\psi \circ f = f' \circ \varphi$;
- 2°. For each pair $(\alpha, \beta) \in M^2$, $(x, y) \in g(\alpha, \beta)$ implies $(\varphi(x), \varphi(y)) \in g'(\psi(\alpha), \psi(\beta))$;
- 3°. For each $\alpha \in M$, the map φ_{α} of E_{α} into $E'_{\psi(\alpha)}$, induced by φ , is a homomorphism.

The composition of two maps is a map; for bijections φ , ψ the condition $\ll(\varphi, \psi)$ and $(\varphi^{-1}, \psi^{-1})$ are maps \gg is equivalent to the condition $\ll(\varphi, \psi)$ is an isomorphism \gg .

PROPOSITION 1. Let (φ, ψ) be a map of a module-system (E, M) with filter \mathfrak{F} into a module-system (E', M') with filter \mathfrak{F}' . If \mathfrak{F}' is finer than the filter on M' generated by the image of \mathfrak{F} under ψ , then the pair (φ, ψ) induces a homomorphism $(\varphi, \psi)_{\infty}$ of $\lim_{\mathfrak{F}} (f, g)$ into $\lim_{\mathfrak{F}'} (f', g')$.

Let s = (S, A, E) be a g-admissible local section of f. Denote by s' the correspondence $\varphi \circ s \circ \psi_A^{-1}$, where ψ_A is the map of A into $\psi(A)$ induced by ψ . s' is a function (Axiom (SM_{III})) which is a g'-admissible local section of f'. Furthermore, $s \rightarrow s'$ is compatible with the equivalence relations R_{∞} and R'_{∞} , thus inducing a homomorphism $(\varphi, \psi)_{\infty}$ of $S_{\infty}(\mathfrak{F}, f, g)$ into $S_{\infty}(\mathfrak{F}', f', g')$.

5. Induced structures. Let (E, M) be a R-module-system and N a part of M. Write E_N for the reciprocal image of N under f, f_N for the subjective map of E_N into N induced by f and g_N for the map of N^2 into $\mathfrak{P}(E_N^2)$ induced by g. Obviously, the pair (f_N, g_N) defines on (E_N, N) a structure of a module-system over R, called the *induced structure*. It is obviously an initial structure in the sense of N. Bourbaki.

Theorem 1. Let (E, M) be a module-system, N a part of M, i (resp. j) the canonical injection of E_N (resp. N) into E (resp. M), and \mathfrak{F} a filter on N. If \mathfrak{F}' is the filter on M generated by \mathfrak{F} , then the map (i,j) induces an isomorphism $(i,j)_{\infty}$ of $\lim_{\mathfrak{F}} (f_N, g_N)$ into $\lim_{\mathfrak{F}'} (f, g)$.

By Proposition 1, (i, j) induces a homomorphism which is bijective because of $s' = i \circ s$ (see proof of Proposition 1).

6. Cofinality. A pair $(\alpha, \beta) \in M^2$ is called *g-distinguished* if the correspondence $(g(\alpha, \beta), E_{\alpha}, E_{\beta})$ is a function.

DEFINITION 3. A filter \mathfrak{F}' is *cofinal* for a filter \mathfrak{F} relative to (f, g), if \mathfrak{F}' is finer than \mathfrak{F} , and if for every set $A \in \mathfrak{F}'$, there exists a set $B \in \mathfrak{F}$ satisfying the following conditions:

(CF_I) For every element $\beta \in B$, there exists an element $\alpha \in A \cap B$ such that that (α, β) is g-distinguished;

(CF_{II}) If (α_1, β_1) and (α_2, β_2) are g-distinguished elements of $(A \cap B)$ $\times B$, then there exists an element $\alpha \in A \cap B$ such that (α, α_1) is g-distinguished and the relation

$$g(\alpha_2, \beta_2) \circ g(\alpha, \alpha_2) \subset g(\beta_1, \beta_2) \circ g(\alpha_1, \beta_1) \circ g(\alpha, \alpha_1)$$

holds (see diagram below).

A filterbase \mathfrak{B}' is *cofinal* for \mathfrak{F} , if the filter \mathfrak{F}' generated by \mathfrak{B}' , is cofinal for \mathfrak{F} .

$$E_{\alpha} \xrightarrow{g(\alpha, \alpha_{1})} E_{\alpha_{1}} \xrightarrow{g(\alpha_{1}, \beta_{1})} E_{\beta_{1}} \xrightarrow{g(\alpha_{1}, \beta_{2})} E_{\beta_{2}}$$

$$E_{\alpha_{2}} \xrightarrow{g(\alpha_{2}, \beta_{2})} E_{\beta_{2}}$$

THEOREM 2. Let (E, M) be a module-system, i (resp. j) the identity of E (resp. M) and \mathfrak{F} , \mathfrak{F}' filters on M. If \mathfrak{F}' is cofinal for \mathfrak{F} , then the map (i,j) induces an isomorphism $(i,j)_{\infty}$ of $\lim_{\mathfrak{F}'} (f,g)$ into $\lim_{\mathfrak{F}'} (f,g)$.

By Proposition 1, (i, j) induces a homomorphism which is bijective because of s' = s (see proof of Proposition 1).

THEOREM 3. Let (f, g), (f', g') be pairs of maps, defining structures of R-module-systems on (E, M), \mathfrak{F} , \mathfrak{F}' filters on M and N a part of M. Suppose, that the induced structures and filters on N exist and coincide, and that \mathfrak{F}_N (resp. \mathfrak{F}'_N) is cofinal for \mathfrak{F} (resp. \mathfrak{F}'_N) relative to (f, g) (resp. (f', g')). Then the modules $\lim_{\mathfrak{F}} (f, g)$ and $\lim_{\mathfrak{F}'} (f', g')$ are isomorphic.

Write \mathfrak{G} (resp. \mathfrak{G}') for the filter on M generated by \mathfrak{F}_N (resp. \mathfrak{F}'_N). Consider the diagram

$$\lim_{\mathfrak{F}} (f, g) \longrightarrow \lim_{\mathfrak{G}} (f, g) \leftarrow \lim_{\mathfrak{F}_{N}} (f_{N}, g_{N}).$$

The first map is induced by a pair of identities and is an isomorphism according to Theorem 2, the second map is induced by a pair of canonical injections and is an isomorphism according to Theorem 1. Because the same argument holds for the primed maps, the theorem follows.

REFERENCES

- 1. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Mathematical Series, no. 15, 1957.
- 2. H. B. Griffiths, On limits of systems of groups, Proc. Amer. Math. Soc. vol. 9 (1958) pp. 118-129.

University of South Carolina