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(4.3) fiz) = i(l + z2)/(l - z2)s

is typically-real in the unit circle. Moreover, since the derivative of

this function vanishes at z= ± ((2)1'2 — l)i, (4.3) is not univalent in

any larger circular domain with center at the origin than that given

in Corollary 4.1.
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ON THE POLE AND ZERO LOCATIONS OF RATIONAL
LAPLACE TRANSFORMATIONS OF NON-NEGATIVE

FUNCTIONS

armen h. zemanian

Let ait) be a real, bounded function of the real variable t defined

in the interval, 0^/< oo, and let its Laplace-Stieltjes transform,

(1) Fis) =   f   e-'da(t),

be a rational function of the complex variable s = a+ico, having at

least as many poles as zeros. Fis) may be written as

n (s - vd n (s - v,)

(2) **> = "?-T-
n c* - p.) n (s - ^)i=i      i=i

where the tj,- and p,- are real and the vt and £,■ are complex. Under these
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conditions, it follows that a(t) is a sum of exponential functions plus

possibly a constant. Moreover, the complex poles and zeros of F(s)

will occur in complex conjugate pairs and all the poles will have

negative real parts.

The purpose of this note is to present a sufficient set of conditions

on the pole and zero locations of F(s) which insure that a(t) is a real,

nondecreasing, and bounded function. Mulligan [l], Lukacs and

Szasz, [2; 3], and Takano [4] have developed necessary conditions

on the pole and zero locations for such an a(t). For example, if

a+ij3 (<x<0) is a pole of F(s), then F(s) has at least one real pole p

such that a^p<0. Furthermore, Lukacs and Szasz [5; 6] have ob-

tained sufficient conditions by restricting their investigation to the

case where all the poles and zeros are simple and have the same real

parts.

The method of proof in this paper makes use of a theorem due to

Bernstein [7, Theorem 12a, p. 160] about completely monotonic func-

tions. A function/(x) is said to be completely monotonic in the inter-

val 0 ^x < co if it is continuous there and has derivatives of all orders

satisfying

(3) (-l)*/«>(x) ^ 0, (0 < x < oo; k - 0, 1, 2, • • •).

Bernstein's Theorem. "A necessary and sufficient condition that

f(x) should be completely monotonic in 0 ^ x < oo is that

/I  00

e-xtdg(t)

o

where g(t) is bounded and nondecreasing and the integral converges for
0^X<oo.»

Now consider a function F(s) of the form (2) where m^ re = h+g+q.

The rji, Vi, Pi and £» need not be distinct so that the following discus-

sion includes the case of multiple poles and zeros. The real poles will

be numbered according to their decreasing values; that is, 0>pi

^p2^ • • • 5:pm. Thus, if a real pole of multiplicity r occurs at s = a

then r of the p, will equal a. Moreover, all the zeros and the complex

poles will be denoted by y{ and numbered according to the decreasing

values of their real parts; that is, denoting the real part of -y,- by a,-,

the7» are numbered according toai^a2^ • • • ̂ a„wheren = h+g+q.

Zeros and complex poles having the same real part are numbered in

any fashion. As in the case of real poles, if the multiplicity of a zero

or complex pole is r, it is counted r times.

Furthermore, let —G(a) be the logarithmic derivative of F(a).
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d F'(a)
G(a) = --logF(a) = --ff

do- Fia)

77i i « 1 A 1 g i

(4)       = Z -1- + Z -?- - Z -^- - E -^-
i-l    ff  —  Pi i=l    IT  —  ^i i=l    <T  —  7?j i=l    (7  —   J'j

i-i  it — pi i=i   <r — 7i

In the last expression, the plus sign is used if 7,- is a pole and a minus

sign is used if 7,- is a zero.

The following lemma, which is due to Aaron and Segers [8], will be

needed.

Lemma 1. Let all the poles and zeros of Fis) have negative real parts.

If Gi<r) is completely monotonic in 0^<r< 00, then F(cr) is also com-

pletely monotonic in the same interval.

Proof. Since all the poles and zeros of F(s) have negative real

parts and are either real or occur in complex conjugate pairs, it fol-

lows that F(cr)>0 for o-=i0. Thus, from (4), — F'ia) is non-negative

in o">0 if G(cr) is non-negative there. Moreover, differentiating

— Fia) p times,

(5) (-l)H-i/r(p+l)(ff)  =  y^[(-l)HF(H)(r)][(_l)lG(BW],
k-o \k /

Assuming that  ( — l)p~kF(p~k)ia)   is  non-negative for cr^O and for

k = 0, 1, • • ■ , p, it follows that it is also non-negative in this interval

for k = — 1 since G(o-) is completely monotonic by hypothesis. There-

fore, the lemma is proved by induction.

The following fact will also be required.

Lemma 2. Ifx^O, y,^0, andx^ zZ"=i Vi< then,for k = 1, 2, 3, •••,
n

ix + \)k + n - 1 ^ V (y< + 1)*.
1=1

The conclusion of this note may be stated as follows.

Theorem. Let ait) be a real, bounded function of the real variable t

defined in the interval, 0^t< co, and let its Laplace-Stieltjes transform

Fis) be a rational function as given by (2) where m^n = h+g+q. Also,

let the largest real pole pi satisfy a, ^ pi < 0 where a,- is the real part of

any zero or complex pole and i = l, 2, ■ ■ ■ , n. Furthermore, let A=an

if an ^p» and let A=pn if p„ <an. If

n

(6) zZ «< ̂  Pi + (» - 1)A,
1=1
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than a(t) is nondecreasing.

Proof. By Lemma 1 and Bernstein's theorem, it is sufficient to

show that G(a) is completely monotonic in 0^a< oo. Consider

( m           1                "            1

(-l)*G*>f>) = ft! < Z - + E -■
1 ti  (o- - Pi)^1        ti  (<r - k)4+1

* 1 » 1      )

" h (t - i?i)*+1 ~  Hi  (<r - k,)*+1J "

That (7) is non-negative for <r2:0 and for ft = 0, 1, 2, • • ■ may be

shown as follows.

The inequality (6) may be rewritten as

Pi-i=t(«- A).
i-l

The quantities on —A are non-negative. Thus, for a^O,

Pi- A        "   at- A        "   on— A

o~ — px        j_=i   ct — pi        j=i  o- — a,-

Invoking Lemma 2, for ft = 1, 2, 3, • • • ,

(Pi -A        y »  (ai - A       \»
(-+ 1) +n-l£ E   -+1) •
V — pi / ,_, V — a< /

Hence,

1 re - 1 » 1

(«• - Pl)* + (<r - il)* ~  £l (o- - «0* '

Now, A^Pi ior i = 2, 3, ■ ■ ■ , re, so that the last inequality may be

replaced by

"1                n           1

£- ^ £_
,_i  (o- — p,-)*        ,_,   (o- — a,)*

For a pair of complex conjugate poles or zeros,

2 1 1

(o- - a,)k        (a - yx)k      (a - f ,)* '

Using this inequality and the fact that m^n, it is readily seen that

(7) is non-negative for o-^O and for ft = 0, 1, 2, • • ■ . Thus, G(<r) is

completely monotonic in the same interval and the theorem is estab-

lished.
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ON PROJECTIONS OF SEPARABLE SUBSPACES OF
im)  ONTO (c)

R. D. MCWILLIAMS1

1. There exists no bounded projection of the Banach space (m)

of bounded real sequences onto the space (c) of convergent sequences

[l] or onto the space (co) of null sequences [2]. It has been shown

however by Sobczyk [2] that if B is a separable subspace of im)

properly containing (c0), then there exists a projection P of norm 2 of

B onto (c0).

In the present paper we show that if B is a separable subspace of

im) containing (c), then there is a projection Q of B onto (c) with

ll^l| =3. We then prove a theorem giving a lower bound for the norms

of projections onto (c) of spaces of the form (c)+(x), where (x) is the

one-dimensional subspace determined by an element xE(c)- Using

this result, we exhibit for each «>la subspace Bn determined by (c)

and n— 1 other elements of im), such that the minimum of the norms

of projections of B„ onto (c) is 3 — 2w_1. It follows that there exists a

separable subspace B^)(c) such that any projection of B onto (c) has

norm at least 3.
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