
A NOTE ON GRADIENT MAPPINGS

E. h. rothe1

1. Introduction. Let £ be a real Banach space, and V a (proper

or improper) subset of £. Let D(x, h) he a function defined for x in

V which for fixed x is a linear continuous functional on E in the vari-

able h, in other words, let D(x, h) define a map of V into the space E*

conjugate to D. Let E and E* have the topologies induced by their

respective norms. The map D(x, h) is called completely continuous if

it is continuous and if the image of each bounded subset of V has a

compact closure in E*. It is said to be a gradient mapping if there

exists a scalar function I(x) such that D(x, h) is the Frechet differen-

tial of I(x) at the point x. For the motivation of this terminology and

for details, we refer the reader to [6] or [7]. It is known that there is a

close connection between the complete continuity of the gradient on

the one hand and the weak continuity or related properties of the

scalar I(x) on the other hand [6, Theorems 3.2 and 3.3]. Further

literature is quoted in [7, footnote ll]; see also [2] and [3]. In par-

ticular, it is known [6, Theorem 3.3] that for convex V the complete

continuity of D(x, h) implies the following property of the scalar

I(x): to each positive n there corresponds a finite number of elements

U(i=l, 2, ■ ■ • , N) of E* such that the inequalities

(1.1) | k(h) |   <u||A||/2 H=1,2,---,N)

imply

(1.2) | /(x + h) - Iix) |   <V7||A||, h, x+hinV.

For the case where £ is a Hilbert space, the converse of this

theorem was stated and proved in [6], The reason for the restriction

was as follows: Hilbert spaces are the only Banach spaces (of dimen-

sion at least 3) with the property that there exists a projection of

norm 1 on every closed linear subspace (see [5]), and such projections

were used in the proof given in [6].

However, it will be seen in the present note, that for the purpose

at hand it is not necessary to have projections of norm 1 (or of uni-

formly bounded norm) on all closed linear subspaces; rather, it will be

sufficient that such projections exist on a large enough collection of

subspaces. To be more precise we introduce the following concept.

Received by the editors October 7, 1958 and, in revised form, February 6, 1959.

1 The paper was written while the author was recipient of a John Simon Guggen-

heim Memorial Fellowship.

931



932 E. H. R0THE [December

Definition 1.1. Let £ be a Banach space and E* the space con-

jugate to E. We say that E has property P if there exists a set

{/«} (* = 1. 2, ■ ■ • ) of linearly independent elements of E* and a

positive number M with the following two properties: the finite linear

combinations of elements of {/,-} are dense in E* (that is, {fi} is a

fundamental set in E* in the sense of Banach [l, p. 58]), and if

Ni= {xEE\fi(x)=0}, then for each integer re there exists a projec-

tion of norm at most M on the intersection f\" Ni.

In §2 we shall show that the converse theorem in question is true

under the assumption P; that is we shall prove the following

Theorem 1.1. Let E be a Banach space with property P. Let I(x)

be a scalar defined in a convex subset V of E with the following two

properties: I(x) has a Frechet differential which is continuous in x, and

corresponding to each positive r\ there exists a finite number of elements

k, l2, • • • , L of E* such that

(1.3) \ I(x + h) - I(x)\   <r,\\h\\        (h,x+hinV)

for all h for which

(1.4) \U(h)\   g,||A|| (* = 1,2, ••-,«).

Then D(x, h) is completely continuous.

§3 deals with conditions that are sufficient for a Banach space E

to have property P. In particular, every reflexive Banach space with

a base will be seen to have property P.

2. Proof of Theorem 1.1. We first recall some properties of an arbi-

trary Banach space E. Let lx, l2, ■ ■ • , lp be p linearly independent ele-

ments of £*, and let A?^ {xG£|/,(x) =0, i= 1, 2, ■ ■ ■ , p}. Moreover

let ax, a2, ■ • ■ , ap be any set of p elements of E which are linearly

independent mod N. (This means that Z"-i aCiiEN implies that the

real numbers yt are all 0.) Finally let Ep be the space spanned by the

a,-. Then each x in E admits a unique decomposition

(2.1) x = xx + n (xxE Ep, nEN),

and, on account of the linear independence of the /,-, the determinant

of the h(af) is different from zero. It is easily seen that this latter fact

implies the existence of a base bx, b2, ■ ■ ■ , bp oi Ep which is "orthog-

onal," that is, for which

(2.2) h(bj) = Sij (i,j= 1,2, •• -,p),

where 8,-y is the Kronecker symbol. If then l(x) is an arbitrary linear



i959] A NOTE ON GRADIENT MAPPINGS 933

continuous functional on £, one obtains almost immediately the

representation

(2.3) /(*) - Z k(*)Kbj) + Kn),
;=i

(apply / to (2.1) after xi has been expressed in terms of the bj, and use

(2.2)). With the notation of this paragraph, the following lemma is

an immediate consequence of the representation (2.3); it may be

considered as a generalization of the well-known fact that any / van-

ishing on Af is a linear combination of the /,-.

Lemma 2.1. Let l(x) have the property that there exists a positive num-

ber 7] such that

(2.4) | l(y) |   <v\\y\\       for ally in N.

Then, for all x in E,

(2.5) /(*) = Z otii(x) + R(x)
<=i

with suitable constants at and with

(2.6) \R(x)\   £n\\n\\,

where n is the element of N appearing in the decomposition (2.1) of x.

In addition to Lemma 2.1 we shall need the following

Lemma 2.2. If the assumption in Lemma 2.1 holds, and if there exists

a projection tt of E on N of norm at most M, then the representation

(2.5) holds with

(2.7) |lc(x)|   t*Mr,\\x\\.

Proof. Since the elements bi are linearly independent mod N, the

elements bl =6, —ir6,- have the same property. If then '£" is the space

spanned by the b{, we obtain instead of (2.1) the decomposition

(2.8) x = x{ + n' (x[ E 'Fp, n' E N).

It is easily verified that x{ =x—ir(x) and n' =ir(x), and consequently,

by assumption,

(2.9) ||»'|| g Jf||*||.

If we now apply Lemma 2.1 to the new decomposition (2.8), we have

to replace n by n' in (2.6). The inequality thus obtained together

with (2.9) proves (2.7).
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We now turn to the proof of Theorem 1.1. We have to establish the

complete continuity of the gradient mapping D(x, h). For this pur-

pose we may without loss of generality assume that V is bounded.

Therefore, by [6, Lemma 3.2] it will be sufficient to prove that, cor-

responding to a given e>0, there exists a mapping D'(x, h) of V

into E* with the following two properties: the image of V under D'

is contained in a finite-dimensional subspace of £*, and

(2.10) | D(x, h) - D'(x, h) |   g e||A||.

We first choose, corresponding to the given e,

(2.11) r, = t/M,

where M is the number appearing in Definition 1.1. Corresponding to

■n, there exist by assumption elements /,- of E* such that (1.4) implies

(1.3). Now, by Definition 1.1, the set {/,-} is fundamental in £*.

Consequently there exist finite linear combinations// of elements of

the set {/,-} such that ||/«— //|| <y, in other words, such that

(2.12) \U(h) -K(h)\   <ri\\h\\ («= 1,2, •■•,»).

Now let the integer p be such that the set/, f2, ■ ■ ■ , fp contains all

elements of {/•} which occur in the linear combinations

// (i=l,2, • • ■ , n), and let N = {h\fi(h) =0, i=l, 2, ■ ■ • ,p}.Then,
for h in N, all//(Zf) are zero, and (2.12) shows that (1.4) holds for

such h; by assumption this implies (1.3). But from (1.3) together

with the definition of the Frechet differential, one concludes easily

(see [6, p. 430]) that

(2.13) | D(x, A) |   ^ i;||A||

for all h in N. We now may apply Lemma 2.2, since by Definition

1.1 there exists a projection of £ on A7 of norm at most M. In the

present notation, we thus obtain from (2.5), (2.7), and (2.11)

D(x, h) = z «./.(*) + *(*)»       I *(*) I  ^ ^11*11 ^ 4h\\-
1=1

This shows that, with the definition

D'(x, h) = Z «#(*),
i-l

D'(x, h) satisfies the two requirements formulated at the beginning

of this proof.
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3. Sufficient conditions for property P. Let £ be a Banach space

with a base {bi}. Then there exists a unique sequence {/,} of elements

of £* such that, for every element x of £,

(3.1) x=zZbiMx)
i=i

[l, Chapter VII, §3]. We now make the assumption that the set

{/,-} is fundamental in £7 and we claim that then £ has property P.

Indeed, if N»= |xG£|/,-(x) =0 for *=1, 2, • • • , p}, then A/" is the

space spanned by bp+i, bp+2, • • • . It follows from Banach's results

[l, p. Ill] that the map E—>NP mapping the point (3.1) of £ into the

point

Z bifiix)
i-p+i

is a projection with a norm admitting a bound independent of p. This

shows that £ has property P.

It follows in particular that every reflexive Banach space with a

base has property P. For in such spaces, our assumption that the set

{ft} is fundamental is satisfied; this follows from [4, Lemma 1, p. 70

together with Theorem 3, p. 71 ].

For reflexive Banach spaces with a base, Citlanadze [2 ] stated with-

out proof some propositions related to Theorem 1.1. In a later paper

[3, Theorem l] he proved such a theorem in the more special case of

an Lp space ip>l).
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