
PROPERTIES OF FIXED POINT SPACES

E. H. CONNELL

In this note relations between the fixed point property and com-

pactness are studied and it is shown that the fixed point property

need not be preserved under the cross product. Most known theorems

concerning the fixed point property (written as the "f.p.p.") are for

compact spaces. It is to be shown that, in the general case, compact-

ness and the f.p.p. are only vaguely related. Example 1 is an example

of a Hausdorff space that has no compact subsets except finite sets.

By the use of Theorem 1, it will be shown that this space has the f.p.p.

Theorem 2 states a weak compactness condition that metric spaces

with the f.p.p. must possess—namely that every infinite chain of

arcs must have a nonvoid limiting set. The space in Example 2 has

the f.p.p., yet its cross product with itself does not satisfy this arc-

compactness condition, and thus cannot have the f.p.p.

Example 3 is an example of a locally contractible metric space which

has the f.p.p. yet is not compact. Theorem 3 states that if X is a

locally connected, locally compact metric space with the f.p.p., then

X is compact.

Example 4 is an example of a compact metric space X which does

not have the f.p.p., yet contains a dense subset Y which does have

the f.p.p. Thus the f.p.p. is not preserved under closure.

Theorem 1. Suppose X is a set and v is a topology for X such that

(X, v) is a regular space with the f.p.p. If u is a stronger topology for X

(i.e., contains more open sets) such that if R is open in u, its closure is

the same in both topologies, then (X, u) has the f.p.p.

Proof. Suppose that/ is a function from X into X that is continu-

ous in (X, u). It will be shown that/ is continuous in (X, v) and thus

must have a fixed point.

Suppose pEX and 0' is any open set of v containing f(p). Since

(X, v) is regular, there exists a set 0 that is open in v, contains f(p)

and OEO'. The closure of 0 is the same in both topologies, since 0

is also open in (X, u). D=f~x(0) is in u because 0 is an open set of

(X, u) and/ is continuous in (X, u). Dis the same in both topologies

and is closed in each. Therefore, D     , the complement of D, is open

in each. D-is the same in both topologies, is closed in each, and

contains D—. Therefore D-is open in both spaces, is contained

in  D,  and  contains  p.  Now  D=\f-l(0)]-Etl(0)Eti(0').  Thus
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there is an open set of u which contains p and whose image under /

is contained in 0'. Therefore, / is continuous in (A7 v) and thus must

have a fixed point.

Example 1. This is an example of a Hausdorff space which has the

f.p.p. yet contains no compact subsets except for finite sets.

Let X be the unit interval and u be the collection of all subsets 5

such that there exists an open set A and a countable (infinite or

finite) set B so that S = A—B. ft is clear that the intersection of any

two such sets is such a set. Also it can be shown that an arbitrary

union of sets of this type is again a set of this type, and thus that u

is a topology for X. In order to show this, note that the union of any

collection of sets of this type is equal to the union of a countable sub-

collection except for a countable number of points.

Let v be the ordinary topology for X. It must be shown that

Sv = SU. Since u is stronger than v, it must always be true that

Sv7)Su. To show inclusion the other way, suppose p is a limit point

of 5 in (A7 v) and S' =A—B contains p, where A is an ordinary open

set and B is countable. Since A must intersect 5 at uncountably many

points, A—B must intersect 5. Therefore p is also a limit point of 5

in (A", u). Thus Sv = S«.

Now according to Theorem 1, the unit interval must have the

f.p.p. under this new topology. No countable set can have a limit

point under this topology, therefore the space contains no infinite

compact subsets. Thus there does not exist a point so that the space

is locally compact at that point. This space is, however, pseudo-

compact. A topological space is pseudocompact if every continuous

real-valued function is bounded. It can be shown that if {0n} is a

countable open covering of (AT, u), then jO„} has a finite subcover-

ing. This implies pseudocompactness (see, e.g., [l]).

The preceding example does not satisfy the first axiom of count-

ability and thus is not metrizable. If a fixed point space is metric,

must it possess some type of compactness? This question is answered

in part by Theorem 2, which states that in a metric space with the

f.p.p., every infinite chain of arcs must have a nonvoid limiting set.

In a space that contains "enough" arcs, this is a type of compactness.

First, it will be necessary to prove 2 lemmas.

Definition. An arc is a homeomorph of the unit interval.

Definition. A countable set of arcs |^4„} = { [bn, cn]} is a chain if

cn = bn+i for all re.

Definition. A collection of sets {Sn} is locally finite if for each

point p of the space, there exists an open set containing p and inter-

secting only finitely many Sn.
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Lemma. // X is a connected, locally connected metric space, M a com-

pact subset of X, and D an open set with MED and D compact, then

only a finite number of the components of M intersect D     .

Proof. Suppose {£;} is an infinite collection of distinct com-

ponents of M, each intersecting D . Since X is locally connected

and M is open, each £,- is a connected open set. Since the space is con-

nected, each Ei has a limit point in M, and thus intersects D as well

as D~~. Each Ei is connected and thus intersects D — D at some

point, say pi. Since D — D is closed and compact and the p{ are dis-

tinct points, they have a limit point p of D — D. Now p is in some

open component E of M, yet E can be no more than one of the £<*

and thus can intersect no more than one £,. Thus at most one pi

is in E, and p cannot be a limit point of the pi". This is a contradiction

and proves the lemma.

Lemma. If X is a connected, locally connected, locally compact metric

space that is noncompact, then its one point compactification is a Peano

continuum.

Proof. Let (X+p) be the one point compactification of X.

(X+p) is connected and compact. The space X is separable [5, p. 75].

Therefore it has a countable open covering {Oi} with each 0, com-

pact. Let Mn = \J"=x Oi and note that {Mn+p} is a countable base

at p in (X+p). Thus the space (X+p) has a countable base, and

since it is regular [3, p. 150] it must be metrizable [3, p. 125].

The connected compact metric space (X+p) will be a Peano con-

tinuum if it is locally connected at p.

Suppose 0 is an open set of (X+p) containing p. Then M = 0 is

compact in X. Since X is locally compact and M is compact, there

exists an open set D (of X) with DZ)M and D compact in X. Apply-

ing the previous lemma, only a finite number of components of M

intersection D~~. Let R denote the union of those components of M

intersecting D~~ which have noncompact closure. R is nonvoid since

X is noncompact. Now (R+p) is connected and open in (X+p) and

contained in 0. Thus (X+p) is locally connected at p and thus locally

connected.

Theorem 2. // X is a metric space with the f.p.p., then every locally

finite chain of arcs is finite.

Proof. Suppose {Are} is a locally finite infinite chain of arcs in X.

Denote their union by A. A is a connected, locally connected, locally

compact metric space in the relative topology. Its one point com-
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pactification iA +p) is a Peano continuum by the previous lemma.

Since a Peano space is arcwise connected [6, p. 81], iA +p) contains

an arc [a, p] with p as one end point. From Borsuk's result [2,

Corollary 14] it follows that the space X cannot have the f.p.p.

The idea used in the proof of the corollary is to show that the "half

line" [a, p), which is closed in X, is a retract of X, and thereby show

X cannot have the f.p.p.

Example 2. This is an example of a metric space X that has the

f.p.p. and yet the cross product of X with itself does not have the

f.p.p.
Let/(x) =sin tt/(1—x) if Ogx<l and/(x) =1 if x =1. X is the set

of points (x, fix)) of Et with O^xg 1. The topology for X is the rela-

tive topology. Suppose g is a function from X to X with no fixed

point. Let Si he the set of points whose x-coordinate moves to the

right and St be the set of all points whose x-coordinate moves to the

left. SiyjSt= [0, l] and thus one of the sets must contain a limit

point p of the other. The point ip, fip)) must be a fixed point.

Now it will be shown that the space XXX does not have the f.p.p.

This cross product space has a natural embedding in Et as follows:

X XX is all (a, f(a), b, fib)) for 0 ̂  a ^ 1 and 0 ̂  b ̂  1 with the relative

topology. Now define a subspace C ol E3 as follows: C is all

(x, f(x)+f(z), z) for O^xgl and Ogzgl. C and XXX are homeo-

morphic. Consider the one-to-one function hia, fia), b, fib))

= (a, f(a)+f(b), b) from XXX onto C. Suppose (an,f(an), bn, f(bn))

is a sequence approaching (a, f(a), b, f(b)) in XXX. Then a„—>a,

f(an)^f(a), bn-*b, and f(bn)->f(b). Then (a„, f(an)+f(bn), bn)

—►(a, f(a)+f(b), b) in C. Thus h is continuous. Now it will be shown

that hr1 is continuous. Suppose (an,f(an) +f(b„), b„)—>(a,f(a) +f(b), b)

in C. Then an—>a, bn-^>b, and f(a„) +f(bn)—>f(a)+f(b). If a is a point

of continuity of/, i.e., if aj*l, then f(an)—>f(a) and so f(bn)^>f(b).

A similar argument holds if b9*l. Now suppose a = b = 1. In this case,

f(a) +f(b)= 2. Since f(an)^l andf(bn)^l, it follows that /(<z„)-^l

= f(a) and f(bn) —> 1 = f(b). Thus in any of the above cases,

(a„,f(an), bn, f(bn))^>(a, f(a), b,f(b)) in XXX. Thus h~1 is continuous

and h is a homeomorphism.

Now an infinite locally finite chain of arcs will be constructed in

C, and thus, by Theorem 2, C will not have the f.p.p. Note that C

is all (x, y, z) where x and z are in [0, l] and y =/(x) +/(z). Roughly,

the construction will be as follows. The first arc will simply be one

hump of the sine wave in the xy plane. It will start at the origin and

follow the sine wave in the xy plane to the first zero. The second arc

will start there and follow a sine curve parallel to the yz plane to the
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next zero. The third arc will start there and be another hump of a

sine wave in a plane parallel to the xy plane. In this manner the arcs

will "approach" in a zig-zag manner the vertical line

{(x, y, z): x=l, — l^yt^l, z=l} which does not belong to the space.

More specifically, if re is odd,

( re— 1 n+l ."" re— 1")
Sn = \(x, y, z):-S x S->  y = sin-, and z = -> .

I n+l n + 3 1 — x re+1;

If re is even,

I re        w — 2 re T    )
Sn =  \ (x, y,z):x =-> -^ z ^-> and y = sin-> .

{. n + 2        n n + 2 1 — z)

This determines an infinite chain of arcs, and it is to be shown that

\Sn} is locally finite.

If l>d>0,thereisan A^sothatSj.C {(x,y,z):x> 1—tiand z> 1— d]

if n>N. Thus if (x, y, z) is a point of C where {Sn} is not locally

finite, x=l and z=l. In this case, y — 2, yet Sn is locally finite at

(1, 2, 1) because no Sn has a y-coordinate greater than 1. Therefore

{Sn} is locally finite, and C does not have the f.p.p. Thus XXX does

not have the f.p.p.

Example 3. This is a simple example of a separable, locally con-

tractible metric space X that has the f.p.p., yet is not compact. The

space X will be a subspace of E2. Let X = Unio In where I0

= [(0, 0), (1, 0)], a unit interval on the x-axis, and /„

= [(1/re, 0), (1/re, 1)], a vertical unit interval extending up from Jo-

Suppose / is a function from X to X with no fixed point. If /o is

the restriction of / to the domain Jo, and /o is projected onto Jo, a

continuous function is obtained from Jo to Jo- It must have a fixed

point (p, 0). Since/o has no fixed point, there is an integer k so that

p=l/k. Thus f(l/k, 0)=(1/Jfe, y) and 0<ygl. Let t be the least
upper bound of {y:f(l/k, y) = (l/k, z) with z>y}. It can be shown

that (1/k, t) is a fixed point. Note that by making 7„, re>0, of length

n instead of unit length, an unbounded subset of the plane with the

f.p.p. may be constructed.

Theorem 3. If X is a locally connected, locally compact metric space

with the f.p.p., then X is compact (see [4, p. 35]).

Proof. Suppose X is not compact. By a previous lemma, the one

point compactification (X+p) is a Peano continuum. It therefore

contains an arc [a, p\. Using Corollary 14 of [2] as in Theorem 2, it

follows that X cannot have the f.p.p.
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Example 4.1 This is an example of a compact metric space X that

does not have the f.p.p. yet contains a dense subset Y that does have

the f.p.p.
X is a subspace of E2. Let A he the square (not including its inte-

rior) with (0, —2), (4, —2), (4, 2), and (0, 2) as its four corners. Let

B={(x, y):0<xgl, y = sin l/x} and X = AVJB. X does not have

the f.p.p. Project B into the vertical line joining (0, —2) and (0, 2),

and then rotate A 90 degrees. This determines a continuous function

from X to X with no fixed point.

Let A' be A minus the open vertical interval from (0, —1) to

(0, 1) and Y be A'^JB. It will be shown that Y has the f.p.p. Suppose

/ is a function from Y to Y with no fixed point. Then/(^4') intersects

B, because if it did not, there would be a fixed point in A'. Since A'

is compact and connected, f(A') is compact and connected and thus

contained in B. This implies that there exists a point p of B so that

f(p) is in B. If 5 is a compact, connected set containing p, f(S) EB.

Thusf(B)EB, and/[(5)W(0, 1)]C-B. However, B\J(0, 1) is homeo-

morphic to the space in Example 2, and thus / must have a fixed

point. It is easy to see that Y is dense in X.
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