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One of the basic tools of research in recursive function theory is the

Recursion Theorem. Statement and detailed proof of this theorem

appear in [l]. As formulated for functions of one variable, the recur-

sion theorem asserts, first, that for any recursive function h, there

exists an integer Xo such that <pX(l and <ph(X<>) are identical as partial

functions; i.e. each represents, extensionally, the same map from the

same subset of the non-negative integers into the non-negative inte-

gers. (Notation: N is the set of all non-negative integers, a, b, • ■ ■ ,

x, y, ■ ■ ■ are members of N. <j>x, x = 0, 1, 2, ■ • • are the partial re-

cursive functions under some standard Godel numbering, f, g,h, • • •

are functions mapping N into N. If ^ and d> are partial functions,

ip=4> means that \f/ and <j> are the same map, defined on the same

subset of N, into N. yp=<p on D, where DCN, means that, when re-

stricted to D, \p and <f> are the same map, defined on the same subset of

D, into N. Henceforth, "integer" shall mean member of N). The re-

cursion theorem asserts, second, that there is a uniform effective

method for computing x<> from a Godel number for the given h. As

has been remarked, the theorem is essentially a fixed point theorem.

In general it is used to show the existence of functions that are im-

plicitly defined in certain stipulated ways. In this respect its use is

similar to the use of the more classical fixed point theorems of

topology and analysis.

In outline, the proof of the theorem is quite simple. Let x be given.

Consider the partial recursive function \p defined as follows.

( fo (X)(z),   if <bx(x) is defined;
\p(z) ^ <

(.undefined, if (bx(x) is undefined.

(Notation: \p(z)c^<p(z), for partial recursive functions \p and <p, means

that 4/ = (t>; see [l, P- 327]). This definition itself provides a uniform

method for computing a Godel number for u/ from x. That is to say,

there is a recursive function g such that
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1 Results of the kind given in this paper were first summarized in an abstract,

J. Symb. Logic vol. 23 (1958). Dr. D. L. Kreider pointed out to the author that the

lemma stated there, while true, is not sufficiently general for the intended applica-

tions. This defect is corrected in the present paper.
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C 4>*Az)(z),   if <Px(x) is defined;
4>oix)(z) — <

(.undefined, if <j>x(x) is undefined.

Now let h be given and let y0 he a Godel number for hog. Then we

have 4>g(v<>)=<t>'t>taivo)=4>higivv)) and x0 = g(v0) is the desired fixed point

value. Clearly x0 is computable in a uniform effective manner from

a Godel number for h.

Applications of this theorem have been of two general kinds. The

first kind concern the theory of recursively invariant properties of

sets of integers. Here, the recursion theorem is usually used in the

weaker form: for any recursive h, there is an x0 such that WXQ = Whix0)

(where Wx is the range of <px, x = 0, 1, 2, • ■ • ). An example of such

use is Myhill's proof of the recursive isomorphism of creative sets,

[2]. The second kind of application occurs in the theories of con-

structive ordinal notations and predicate hierarchies. Examples of

such use are found in [3; 4; 5]. We shall be henceforth concerned with

applications of this second kind.

These applications have certain common features which we formu-

late as a general lemma and give in the present paper. The common

features are not immediately evident in the various occurrences in

the literature. An explicit formulation of them is of value, both as

an intuitive guide to the beginner and as a heuristic aid in research.

Some of the applications concern the existence of certain partial

recursive functions defined over the well ordered partially ordered

tree (O, <„) of constructive ordinal notations (see [3]); roughly

speaking, these applications can be summarized in the following prin-

ciple: if, from any partial recursive function defined on a segment of

<0 and possessing certain specified desirable properties, one can ef-

fectively find a partial recursive extension of that function defined on

an extension of that segment and possessing those properties, then

there is a partial recursive function defined on <0 possessing those

properties. Other applications concern the existence of functions

related to <„ in a somewhat more complex way. In our lemma and

the illustrations which follow it, we shall show that all of these ap-

plications can be embodied in a certain recursive principle of trans-

finite induction. This principle is similar to that stated above for

<0, but with the provision that <0 is replaced by any well ordered

partial ordering of integers. Thus the special recursive structure of

<0 plays a less important role than might have been suspected.

Definitions. The relation <w defined on a certain set Woi inte-

gers will be called a partial ordering if it is transitive and irreflexive.

From now on we assume that <w is such a relation.
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For such a relation, a^w b shall mean [a<w b or a = b].

<w will be said to satisfy the descending chain condition if there

is no infinite sequence {at} of elements of W such that aj<w cti for

all *, j such that i <j.

An element m of W will be called minimal in the set D if mED

and there is no aE-D such that a<wm. We say that <w is we//

ordered if every nonempty subset D ol W contains an element which

is minimal in D.

It is easy to show that <w satisfies the descending chain condition

if and only if <w is well ordered. (The Axiom of Choice is not neces-

sary for this proof since IF is a set of non-negative integers, and the

natural ordering of the integers provides us with a choice principle

for all occasions.)

A relation will be called well founded, if it is a well ordered partial

ordering. This terminology derives from [7] where such relations are

studied in a general set theoretic context.

S is a segment of W if SEW and if [[aG-S and b<w o]=*JG5],

For aEW, (a) shall be the segment {b\ b<w a}; and (a] shall be the

segment {b\bf^w #}• Note that W is a segment of itself.

Lemma. Let <w be a well founded relation on W. Let SD(x, S) be a

relation between integers x and segments S of W such that

(i) [£)(x, S) and <bx = <by on S] => 2D(y, S),

(u extensionality" assumption);

(ii) S>(x, (a]) for all a E S =» 50(x, S),    ("continuity" assumption).

Let f be a recursive function of two variables such that

(iii) £>(*, (a)) => [SD(/(x, a), (a]) and <bf(x,a) = <bx on (a)],

("effectiveness" assumption).

Then there exists an integer Xo such that SD(xo, W).

Before giving the proof, we comment that the relation 2D represents

some given criterion of desirability for partial recursive function <px

defined on segment S. For the lemma to apply, this criterion must

satisfy conditions (i) and (ii). The function / represents an effective

procedure for extending any "desirable" partial recursive function on

a given segment to a "desirable" partial recursive function on the

larger segment. The lemma then asserts that, in the presence of (i), (ii)

and (iii), a "desirable" partial recursive function exists on W. For

example, <w might be <„ and T>(x, S) might assert: <px is defined on 5

and for any aES, d>x(a) gives, as value, 2p3q where p is a Godel num-
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ber for the predicate Ha in one-function-quantifier-existential form

and q is a Godel number for Ha in one-function-quantifier-universal

form. (For notation and terminology, see [4] or [6].) In this case/

would embody the intuitively rather simple inductive procedure for

getting the one-function-quantifier forms for Ha from those for Hi,

b <» a. Conditions (i), (ii) and (iii) hold, and application of the lemma

gives the existence of a recursive function, defined over the whole of

<„, with the desired properties. This result is Theorem 9 of [4] (cf.

Theorem XXI of [6]).

Comment. The reader will observe suggestive similarities between

the lemma and some of the inductive principles of classical set theory

by which continuous ordinal-valued functions may be defined over

segments of the ordinal numbers. The special feature of the lemma is,

of course, that the ultimate function produced is partial recursive.

Proof of the Lemma. Consider the partial recursive function \p

defined by: \p(a)^<p/iX,a)(a). A recursive function h can be obtained

giving a Godel number for \p as a function of x. Applying the recursion

theorem, we get an Xo such that

(iv) 4>Xa(a) ca <t>/iXo,a)(a) as a varies.

We now show, by contradiction, that 33(xn, W). Assume not

£)(x0, IF). Then by(ii),not £>(x0, (a]) for some aEW; i.e., {a\aEW

and not 3D(xo, (a])} is nonempty. Choose a minimal member m of

this set. Then 2D(x0, (b]) for all b<wm, and by (ii), D(x0, (m)). Hence,

by (iii), 5)(f(x0, m), (m]) and 0/(xo,m) =<£x0 on (m). But now, by (iv),

0xo=<rV(*o,m) on (»»], and hence by (i), 2D(x0, (m]); a contradiction. This

completes the proof.

Two plausible alterations of the lemma suggest themselves. They

are: (a) try to drop the "<pjiX,a) =<pxon Sa" condition in (iii); and (/3) try

to obtain the converse of (ii) as an additional conclusion. Neither of

these is successful. In case (a), let W he the integers in natural order,

and let D(x, S) mean: <px is defined on 5 and is monotone decreasing

on S. Then (i), (ii) and the modified (iii) would hold; but £>(x, W) is

false for any x. In case (/3), let W be the integers in natural order; let

SD(x, S) be true for any x if 5 is empty; let D(x, (b\) be true if and

only if <px(b) is defined and <px(b)^b; and let SD(x, IF) be true if and

only if <px has infinite range. Then both assumptions and conclusion

of the lemma hold, but the converse of (ii) does not hold for all x

and S.
Parameters. Parameters can be given a convenient and straight-

forward role in the recursion theorem. Let p be the integer-valued

parameters px, p2, ■ • ■ , pk. We say that the function ft(p) is a recur-
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sive function of / variables effective in p, if there is a recursive function

/ of k+l variables such that ft p)(x)~/(x, p) (where x represents the

variables xi, Xt, ■ • • , x{); this is in turn equivalent to the statement

that there is a recursive function/' of k variables such that h^(x)

~$f(p)(x). The initial formulation of the recursion theorem can now

be given in a stronger parametric form: for any recursive function

ft^ of one variable, effective in p, there is an x0 such that </>^(p)

= <Phip)(x„(p)) where xo(p) is a recursive function of k variables; further-

more there is a uniform effective procedure for getting a Godel num-

ber for the function Xo from a Godel number for the function of k + l

variables denoted as h . The proof follows by trivial modification

of the initial proof for the recursion theorem outlined above.

A corresponding strengthened form of our lemma can also be given.

We introduce parameters p and let W, 20, and / all depend upon p.

Only the dependence of / on p need be effective. We have:

Let <tt(p) be a well founded relation on W^. Let (a)00

= {b\b<wb) a} and (a]w= {b\ b^wb) a}. Let SD^x, S) be a rela-

tion between integers x and segments S of W^1' satisfying the condi-

tions

(i) [S)w(x, S) and <bx = <bv on S] =» »w(y, S),

(ii) 20w(x, (o]w) for all a E S =^30(p)(*, S).

Let /^ be a recursive function of two variables effective in p such

that

SD(p)(x, (a)w) =* [fiVfe a), («]<">) and
(hi) ,

0/Wfea) = <t>x on (a)w\.

Then there exists x0, a recursive function of k variables, such that

for all p, SD(p)(x0(p), W™).

The proof is the same as before, except that Xo is obtained by an

application of the recursion theorem to yield d>xa(a)c^<pfip)^X(jta-i(a) as a

varies. In many applications it will be true that for any x, cpf(p>^(a)

is everywhere defined as a function of a; as a final corollary we note

that in such cases, <pxo is everywhere defined. A similar comment

holds with the words "everywhere defined" replaced by "primitive

recursive."

Applications. We conclude with some comments on three applica-

tions of the Lemma.

Application 1. As a first and simplest application, consider the

partial recursive function <p(a, b)=a+0b defined by Kleene in [3]

by use of the recursion theorem. This function has the property
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(among others) that it is defined for a, bEO and that |a+0&|

= \a\ +\ b\ ior all a, bEO. (Recall that 0 is a set of "notations" for

ordinals; for a GO, \a\ is the ordinal having a as notation. |a| +\b\

indicates ordinary addition of ordinals.) The proof of the existence

of a function with this property can be given, in a natural way, by

use of the parametric form of the lemma. Take a as parameter; and

take < n/(a)to be <0 if aEO, and Ww to be empty, if aEO. Let

£>(a)(x, S) assert: <px is defined on S and gives an order preserving map

of 5 into 0 such that for any bES, | <px(b) | = | a| +1 b\. Then condi-

tions (i) and (ii) hold. fM is chosen to represent the procedure by

which any such <px on (b)(o) can be extended to (b ](a). (I f b = 1, the new

value at b is a; if b = 2C, the new value at b is 2*i(c); if b = 3 ■ 5", the new

value at b is 3 • 5"' where y' is chosen so that <py> = <pxo </>„.) Then by

the lemma, a recursive function x0(a) exists such that for aEO,

<Px0ia) gives an order preserving map of 0 into 0 with the property

that |0io(o)W| = |a| +1 °\ f°r anY bEO. Hence, setting <p(a, b)

—<Px<,ia)(b), we have the desired partial recursive function.

Application 2. In 6.3 of [4], Kleene proves that there is a partial

recursive function \p(a, b) such that if a^0b then ip(a, b) is an index

for a procedure for Ha recursive in Hb. (For terminology and notation

see [6]. This result is also given as Theorem XIV in [6]). This proof

falls under the scope of our lemma. We need only view a as param-

eter, IF(o) as {&|o^0 b}, 3)(o)(x, S) as the assertion: for every bES,

4>x(b) is defined and gives an index for Ha recursive in Hi. The ap-

propriate /(o) for condition (iii) follows from the definition of Hi and

the fact that for any a, bEO, (b)(-a) is recursively enumerable uni-

formly.

Application 3. Similarly, the final step in Specter's solution of the

uniqueness problem for constructive ordinals, (Theorem 5 of [5]),

involves an application of the recursion theorem that comes within

the framework of the lemma. Our goal is to show that there is a par-

tial recursive function y such that if a, bEO and |a] =|&|, then

y(a, b) is an index for Ha recursive in Hi. In this case we take W

= {2"3b\a, bEO and |o|=|6|}, and 2a3b<w 2"'3b' if |o|<|o'|.

SD(x, S) asserts: <px is defined on 5 and, for 2a3b in S, <px(2a3b) gives an

index for Ha recursive in Hb. Specter has previously shown that

{o||a|=|i|}is recursive uniformly in H2%, and the existence of an

appropriate / for condition (iii) now follows straightforwardly from

this fact and the constructions given by Spector. Hence the lemma

applies (here in nonparametric form), and the desired y exists.
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ON A SPECIAL INTEGRAL EQUATION1

DAVID A. WOODWARD

1. Introduction. R. H. Cameron posed the following question2 in a

paper [l]. Does

(1.1) y(l)=x(t)+f      [x(s)]2ds, O^^l,
J 0

have a solution xE C lor almost every choice of y E C? Here C denotes

the space of continuous functions on O^t^l which vanish at / = 0,

and "almost every" means all but a set of Wiener measure3 zero.

The answer is no as we proceed to show.

2. We will show that ilyEN ={yEC: \y(t)+4t\ <1/10, Ogrgl}
then (1.1) has no solution x among the elements of C. Then the an-

swer to the question is no, since N, a uniform neighborhood, has posi-

tive measure.

Suppose that yEN, xEC, and (1.1) holds. Let

(   0,0 < t ^ 1/10
z(t) = \        -       '

\-1(t - 1/10), 1/10 ^ t£ tt/4 + 1/10
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