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1. Introduction. In this note we consider free boundary problems

for equations of the form

(1) &4> = gix, y, d>x, 4>v)

and

(2) W-, = Piz, W).

In the latter equation W and p are complex, and

Ws = — iWx + iWy).

We shall show that a simple method can reduce free boundary prob-

lems for these equations to the same problem for harmonic or analytic

functions. The corresponding problems for analytic functions can

readily be handled by conformal mapping techniques.

We employ a method developed by Bers [l ] in the study of pseudo-

analytic functions. In order to illustrate the ideas, we have picked

an example which has no technical difficulties. More involved ap-

plications will be considered in subsequent publications.

2. The problem for equation (1). Let T be a simple closed curve

with continuously turning tangent and assume that its interior D

contains the origin. Assume that there is a (possibly multiple valued)

function qb having continuous second derivations inD— [0] and such

that

1. 4> satisfies equation (1) in D— [O],

2. d> has continuous first derivatives in D— [0] and

& + 4>2y = 1 on T,

3. The normal derivative of 4> vanishes on T,

4. i<pl+<t>l)ix2+y2)->\2?±0 as (x, y)-^0.
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If r and <p satisfy conditions 1-4, we shall say that they solve prob-

lem I.

Our result concerning problem I is the following

Theorem 1. Assume that g(x, y, u, v) is Holder continuous in all

arguments in every closed subdomain of 0 <x2+y2 < oo, 0 <u2+v2 < <x>

and that for x2+y2^R2

I gix,y, u,v)\   g NR(\ u\   +  \v\),

where the constant Nr depends only on R. Then there exists a positive

constant X0 depending only on NR such that problem I has a solution for

all 0<X<X0. // g = 0, then X0=«>, T is the circle x2+y2 = X2, and

<p= +tan_1 (y/x).

Theorem 1 follows from a more general theorem given in the next

section.

3. The problem for equation (2). Now assume that T and <f> solve

problem I and set

W = <bx- i<bv = 2<b,.

Then W has continuous derivations in D— [0] and has the following

properties

1°.   W satisfies equation (2) with

(3) p(z, W) = g(Re z, Im z, Re W, -Im IF),

2°.   IF is continuous in D— [0] and

| IF |   = 1 on r,

3°.  If n = nx+inv is normal to T,

Re Wn = 0 on T,

4°.   | IFz|-^X>0 asz-^0.

If T and IF satisfy conditions 1°—4° with any complex function p(z, W)

not necessarily satisfying (3), we shall say that T and IF solve prob-

lem II.
Concerning problem II we shall prove the following result

Theorem 2. Let p(z, W) be Holder continuous in z and W in every

closed subdomain o/0<|z|<°°, 0<|lF|< », and assume that for

\z\ ^R

| p(z, IF) |   ^ NR\W\,

where the constant Nr depends only on R. Then there is a positive con-
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stant Xo depending only on NR such that problem 11 has a solution for

all 0<X<X0. If p = 0, then X0= », T is the circle \z\ =X, and W
= ±i\z~1.

The proof of Theorem 2 will be given in the next section.

Now assume that T and W solve problem II with p(z, W) a real

function. We shall show how to construct a solution of problem I.

In fact if we set

W = u — iv,

the condition

Im 1*7 = 0

implies

uy = vx.

This means that the possibly multiple valued function

1 (" If4>(x, y) = — I   udx + vdy = — Re   I    Wdz
2 J zx 2 J Zi

exists in D— [o], where Zi9*0 is some fixed point in D. Moreover it

has continuous second derivatives in D— [0] and

W = 2d,,.

Hence

(4) Aid = 4£„ = 2p(x + iy, d>x - itby) = g(x, y, tbx, <bv).

Since the normal derivative dtp/dn equals

dib
— = unx + vnu = Re Wn,
dn

T and d> solve problem I. Since the hypotheses assumed for p(z, W)

in Theorem 2 imply those assumed for g(x, y, u, v) in Theorem 1 when

g is defined as in (4), Theorem 1 follows immediately from Theorem 2.

4. The proof of Theorem 2. That

T: | z|   = X,       w = + iXz-1

is a solution of problem II with p^O is easily checked. It also is the

only solution with smooth boundary. For let T and w be any such

solution, and let/(z) be the analytic function which maps the interior

D ol T onto \z\ <X in such a way that/(0) =0. If n = nx+inv is nor-

mal to r,
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n = — f'(z) = ei9f'(\eie)
A

on r and hence

Re zw(f(z))f'(z) = 0

on |z| =X. Since

(5) | zw(f(z))f'(z) | ~ \fw(f)\ -»X

as z—>0, the function zw(f(z))f'(z) is analytic in | z| <X and imaginary

on the boundary. Thus it equals an imaginary constant, and this

constant is ±ik by (5). Since |w(/(z))| =1 on |z| =X, |/'(z)| =1

there. Sincef'(z)=^0 in |z| <X, we must havef'(z) =eic. Hence fw(f)

= +iX and T is the circle |/| =X.

Now consider complex functions s(z) defined in |z| s=X. If s(z) is

bounded there, set

||;|| = max | s(z) \ .

If s(z) is Holder continuous in |z| 5^X with exponent a, set

il              , .         | s(zx) - s(z2) I
I ̂  |a =        lub       —I-;->

|zi|gX;|z2ISX       I Zi — Z2 |"

ll5ll"= IMI + I s\°>-
We denote the space of all s(z) such that

INI« < °°
by Ca- Next we define

1    r 2w Xei9 + z
As(z) = — I      - Re s(\eie)d6 + i Im 5(0).

27rJo    Xe1'9 — z

It is easily recognized that ^4s is the analytic function in | z| <X such

that

Re (s — As) =0       on | z \   = X,

Im (s - As) = 0       at        z = 0.

By a theorem of Privaloff [2] and Bers [l] we have

Lemma 1. If sECa, then AsECa and

|  As \a ^  Ka I 5 |a

where the constant Ka depends only on a.
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Since A is linear, Lemma 1 shows that A is a continuous trans-

formation of Ca into itself.

Next, consider the operation

ivw-—i-ff   ^^
tr J J If kx   f — z

where £' = £+*'?• Concerning T we have

Lemma 2. If a(z) is bounded in \z\ ^X, £ftera TaECpfor allj3<l and

||tv|| ̂  2x11(711,
| 7V 173 ^ Af^| | <xj J

where the constant M$ depends only on p\

Lemma 2 shows that T is completely continuous in any Cp, /3<1.

Since it is linear, it is also continuous.

Lemma 3. If a(z) is Holder continuous in every bounded subdomain

of 0<\z\ <X, Ta has continuous derivatives in 0< | z| <X and

(TV), = a

there.

The proofs of Lemmas 2 and 3 may be found in [l].

We are now ready for the

Proof of Theorem 2. Let BM be the set of all sECa such that

IMI« ^ M.
If sEBm, let f(z) be the analytic function defined by

/(0) = 0,

f'iz) = eA,+iA".

Now by Lemma 1

\As - s\a ^ (A7+ l)M

and since ^4^ — 5 is imaginary on the boundary and real at z = 0,

\\As- s\\ < 2M\"(Ka + 1).

Similarly

\\iAis + s\\ ^ 2M\"(Ka + 1).

Hence

\\As + iAis\\ < 4M\aiKa + 1) b L
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and

I/M I   ̂ eL

in \z\ ^X. Since/(0)=0

(6) |/00 |  ^xe£^v.

Now by hypothesis

(7) p(z, w) = t(z, w)w

where

(8) | r(z, w)\   ^NR

in | zI ^P and t(z, w) is Holder continuous in every closed subdomain

ofO<|z| <°o, 0 < | w | <c°. Set

S(z) = T{[f'(z)]~r(f(z),w0(z)e'-^)}

= T0s(z),

where [f'(z)] denotes the complex conjugate of f'(z) and wa = i\z~1.

Applying Lemma 2 to (6) and (8), we see that

\\s\\ ^ 2vN„

\S\(,^ Mf>eLN,

for fi<l. If we take a<t3<l, we have

||5||« ^ (2X + ^-"M^)eLNv.

We now pick X so small that

\\S\\a  ^   M,

i.e., SEBm. Thus P0 maps Bm into itself. By Lemmas 1 and 2 it is

continuous and completely continuous in Ca. Hence by the Schauder

fixed point theorem [3] there is a function sEBm such that

s(z) = T0s(z).

Lemma 3 shows that s(z) has continuous derivatives in |z| <X and

that

(9) s, = [f'(z)fr(f(z), w0e-*-).

Let

% = Kt)

be the inverse mapping of f =fiz) and set
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(10) w(£) = w0(ft(r))e'-A'

where /(f) =5(ft(f)). If T is the image of |z| =X under the map/(z),

we claim that T and w solve problem II.

In fact, by (10)

w, = Wtj

and from (9)

t} = s,[h'(z)]~=TQ:,w)

and hence by (7)

Wi = p(f, w).

In addition s— As is imaginary on |z| =X. Hence

| w |   =  | wo | • | ef~At |   = 1

on r. Moreover, if n = nx+iny is normal to T

n = -f yw
X

and hence

z
WM =  Woe'-4'-gAt+iAu

X

= iet+iAit.

But it is easily checked that s+i.4ts is real on | z| =X and hence

Re wn = 0

on r. Finally,

\w$\  ~ |w/'(z)z| ~ I w0e'-A*-CA*+iAi'z\

~ | Xe'+,'Ai*|   = X

as f—>0, since ^+i^4w is imaginary at z = 0. Hence T and w solve

problem II. This completes the proof.
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