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1. The measure of approximation. Let the function/(z) be analytic

and uniformly limited and have k zeros interior to a simply connected

region G of the plane of the complex variable z = x+iy. The set of

functions analytic interior to G and which vanish either identically

or not at all interior to G form a closed set 5 [l, p. 343]. For every

function Fiz) uniformly limited and of class S in G we set

M{F) = l.u.b.[ | Fiz) - fiz) | , z in G]

and let M denote the greatest lower bound of all M(F). Walsh has

shown [l, pp. 344-346] that there exists a function in 5, call it F*(z),

for which M(F*) = M. In certain situations he has found the precise

value of Af as well as functions F*(z) of best approximation. In some

instances he has exhibited an infinity of functions F*(z) of best ap-

proximation.

The purpose of the present paper is (1) to put an appraisal on M,

(2) to present two theorems on the number of zeros in G of functions

which approximate closer to /(z) than the lower appraisal on M.

2. Appraisal of M. Consider a region G, a function/(z), the set S

of functions F(z) and the measure M of best approximation to /(z)

by functions of class 5, all as described above in §1. Let the k zeros

of fiz) in G occur as follows: ki zeros at z = ffli, kt zeros at z = at, ■ ■ • , km

zeros at z = am, where ki+k2+ • • • +km = k. Let R denote the Rie-

mann configuration over the w-plane [2, p. 130] onto which G is

mapped by w=/(z). Let the points wi, w2, • • ■ , wm on R, all with

affix w = 0, represent respectively fiai), /(02), • • • , fiam). At each

point Wi of the set Wi, w2, ■ ■ ■ , wm consider the radius Dk^wi) of

ki-valence there [2, pp. 161-162]. Let D0 denote the greatest number

to be found among the Dkiiwi).

Any point w on the w-plane such that there is a point P of R whose

affix is w will be said (as in [2]) to be covered by P. Let r0 denote the

radius of the largest circle K0 of all circles K centered at i» = 0 such

that every point within K is covered by at least point of R. On K0

itself there will be at least one point which is not covered by any

point of R. It is seen that D0^r0. Then we have the following ap-

praisal of M.

Theorem 1. D0^M^r0.
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Proof. Let w = b he a point on K0 which is not covered by any

point of R. It follows at once that the function F(z) =/(z) — b is in

class S and such that M(F)=\b\ =r0. It remains to prove that

Dq^sM. Let g(z) be any function which is analytic interior to G and

such that

I g(z) - f(z) |   ^ H < D0,        z in G.

Cut through R with a circular biscuit cutter of radius C, where

H<C<D0, so that the centers of circular sheets thus cut from R

have affix w = 0. Let z = q(w) denote the inverse of w=f(z) and con-

sider the transform under z = q(w) of the ftA-sheeted circle [2, p. 159]

of radius C inside the biscuit cutter with sheets hanging together at

Wh, where wh is a point of the set wx, w2, ■ ■ • , wm such that Dkh(wh)

= D0. This transform is a simply connected region Qh lying in G and

bounded by a contour Jh also lying in G [2, p. 164]. On Jh we have

|/(z)|=C and \g(z)—f(z)\<C. It follows by Rouche's Theorem

[l, p. 6] that the function g(z) has precisely kh zeros within Jh. Thus

every function g(z) for which l.u.b. [\g(z) — f(z)\, z in G]<D0 van-

ishes in G. Consequently M can not be less than D0.

3. Number of zeros of approximating functions. By following

through with the method employed in the proof of Theorem 1 we

obtain a result on the number of zeros of approximating functions as

follows. Let the distinct numbers to be found among the Dki(w/)

arranged in order be D0>DX>D2> ■ ■ • >DP. Then we have the

following theorem.

Theorem 2. Let f(z) be analytic and uniformly limited interior to a

simply connected region G and have ft zeros in G distributed as described

above in §2. Let g(z) be analytic interior to G and such that

| g(z) - f(z) |   ^ C < D*,        z in G,

where D* is one of the numbers D0, Dx, D2, ■ ■ ■ , Dp. Then g(z) has at

least as many zeros in G as the sum of the ktfor which Dki(Wi)^D*.

The proof of Theorem 2 is omitted, since it is essentially contained

(except for the addition of the pertinent ft, which provide the count

of the zeros of g(z) within the contours J,-) in the latter part of the

proof of Theorem 1.

We observe in particular that if

l.u.b. [\g(z) - f(z) \,z in G] < Dp,

it follows at once by Theorem 2 that g(z) has at least as many zeros
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in G as has/(z). Indeed, we can make this observation precise, as

shown in our next theorem.

Theorem 3. // giz) is analytic interior to G and such that

I g(z) — fiz) |   ^ L < Dp,       z in G,

then giz) has precisely as many zeros in G as has fiz).

Proof. As we have already indicated, it follows by the method of

proof used in Theorem 1 that g(z) has precisely k zeros situated

interior to the regions (bounded by the contours J\, J2, • • ■ , Jm)

which are the transforms by z = g(w) of the m simply connected multi-

sheeted circles (including single-sheeted circles, if any, corresponding

to simple zeros ol fiz), if any) cut from R by a circular biscuit cutter

of radius r, where L<r<Dp and the centers of the circles all have

affix w = 0. If giz) were to have more than k zeros in G, all zeros other

than the k zeros just mentioned would have to lie not interior to the

contours Ji, J2, ■ ■ ■ , Jm- Suppose there were such an additional zero

at z = a. Then the point w=/(a) on R would not lie interior to the bis-

cuit cutter; and we would have |/(a)| ?tr>L. But g(a)=0. This

would make \gia)—fia)\ >L, contrary to hypothesis. Therefore g(z)

has precisely k zeros in G.
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