
ON THE GALOIS THEORY OF DIVISION RINGS

JOHN H. WALTER1

1. Throughout this paper, K will represent a division ring and L

a galois division subring. We are interested in establishing a galois

theory for the extension K/L when K/L is locally finite. In order to

do this one must identify the galois subrings of K containing L. An

example given by Jacobson [4] shows that not every such division

subring is galois. However, we obtain that each subring subject to a

natural finiteness assumption is galois when the dimension [K:H]i

5= No where H is the division subring left fixed by all inner auto-

morphisms which leaves L fixed. For these subrings we then obtain

the usual theorems. We rely strongly on topological characterizations

of the galois groups. In particular, we characterize the extensions with

locally compact and complete galois groups. These results provide

extensions and simplications of the recent results of Nagahara,

Tominaga, and Nobusawa on division rings cited in the bibliography.

2. By G(K/L), we mean the group of all automorphisms of K leav-

ing fixed a subring L; such a group will be called a galois group (some-

times this group has been called a total group of automorphisms).

If L' is the fixed division ring of a group G of automorphism of K,

then L' is said to be a galois subring of K and the extension K/L' is

said to be galois; L' is necessarily a division ring.

The extension K/L is said to be locally finite if every finite set of

elements of K is contained in a division ring whose dimension as a

left L-module is finite. By [Z/: L]i and [L':L]r we mean the left

and right dimensions of a division ring L' as, respectively, a left and

right L-module. In cases where these are obviously the same, we

make no distinction and write [Z/:Z,]. A finite extension L'/L is

one where [L': L ] i < oo .

On the group G(K/L), we place the finite topology. Here a base

for the neighborhoods of the identity consists of those groups of all

automorphisms leaving fixed some finite subset of K. When K/L is

locally finite, they are of the form G(K/U) where [L':L]i<&>.

These subgroups are closed.

When U is a division subring of K containing L and G is a group

of automorphisms, we denote by GL> the set formed by the restrictions

of the elements of G to L'. With the finite topology, this set is homeo-

morphic to the homogeneous space G(K/L)/G(K/L'). An extension
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L' of L is normal in K/L if V is left invariant by the automorphisms

of G(K/L). If L' is a normal extension of L in K/L then G7v is a

group. The restriction mapping of G onto Gl> is clearly continuous

and is a homomorphism when Gv is a group.

By Vk(L'), we mean the centralizer of a subring L' of K in i£.

We will standardize our notation by always taking T= Vr(L) and

H= VK(T). We designate the center of a subring U by ZL<; in par-

ticular, we set Zk = Z.

We here mention some recent results of Nobusawa [ll], of which

we will make great use.

(Nl) Let K/L be galois and locally finite. Let L' be a division ring

which is finite over L. Then K/L' is galois.

(N2) If L' is a division subring of K containing L, [ V7(L): Fx(L') ]r

^ [L': L]i. If L'= VKiVKiL')), then equality holds.
(N3) Let K/L be galois and locally finite. Let L' be a division sub-

ring of K containing L and let L'H be the division subring generated by

the elements of U and H. Then L'H/L' is outer galois and the restriction

mapping

p: G(L'H/H) -> G(H/L'H)

is an isomorphism. Furthermore, if [Vk(L): Vk(L')]t< <x> , then L'H

= Fk(Fjc(L')). Also we will use freely the results of Jacobson [5,

pp. 166-169] and Nobusawa [9].

3. In this section, we begin the development of the galois theory

for the extensions K/L which are locally finite and galois. These re-

sults are, in part, extensions and simplifications of results of Nagahara

and Tominaga [7] and Nobusawa [ll].

Proposition 1. Let K/L be galois and locally finite. Then if L' is a

division subring of K containing L, [H': H]t= [L': HC\L']i= [T: T']r

where T' = Fx(L') and H' = L'H, the division subring of K generated by

U and H. If [H': H]t < °o , then H' = Vk{Vk{L')).

Proof. By Nobusawa's theorem (N3), H'/L' and H/LT\H are

outer galois extension and the restriction mapping p: GiH'/L')

—*GiH/LT\H) is an isomorphism. Now let Xi, Xt, • • • , x„ be M-

independent elements of L' where M = LT\H. We will show that

they are i^-independent elements of H' by applying a standard argu-

ment. Therefore, suppose that there exists a shortest expression

(1) aiXi + • • • + anxn = 0

with nonzero elements a{EH. We may suppose that «>1 and that
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ai = l. Let aEG(H'/L'). We have

(2) axxx + a2x2 + • ■ • + anxn = 0.

Upon subtracting (2) from (1) and using the fact that a\ =<xx = l, we

obtain a shorter expression than (1). Thus unless a" = a„ for

i=l, 2, • ■ ■ , n and all aEG(H'/L'), we have a contradiction. This

implies that (XiEL' and hence caELT\H=M for i=l, 2, • • • , re.

Finally the M-independence of the elements xi, x2, • • • , x„ gives a

contradiction and (1) cannot exist. Thus the elements Xi, x2, ■ ■ ■ , xn

are also iJ-independent. This implies that [U: HP\L']itk [H1: H]t.

Now VK(H')=VK(L')r\VK(H)=VK(L') = T'; also VK(Iir\L')

= VK(H) = T. Then by (N2), [H': H],= [T: T']r^ [V: Hr\L'],. This
together with the preceding inequality proves the first statement of

the proposition. The second statement then follows immediately from

Nobusawa's theorem (N2) as Nobusawa pointed out.

The following is a generalization of part of [7, Lemma 9]; we use a

modification of their argument.

Proposition 2. Let K/L be galois and locally finite. Suppose that

L' is a division subring of K containing L such that [T: T']r < °°. Then

K/L' is locally finite.

Proof. We first assume that H 3 L' 3 L. Let F= {yx, y2, ■ ■ ■ , ym}

be an arbitrary finite subset of K. Let L(F), L'(F), and H(F) be the

division subrings of K generated by F over the respective rings L, L'

and H. Because K/L is locally finite, [L(F):L]t< oo. Let Q = L(F)r\H.

Then [Q: L]t< =°. Let Xi, x2, ■ ■ ■ , xn be a Q-basis of L(F) and let

qi, q2, ■ • ■ , qP be an L-basis of Q. By the proof of the previous

theorem, Xi, x2, • ■ ■ , x„ are iJ-independent. Therefore, they form an

H-basisforH(F).
Now H/L is certainly locally finite and outer galois. Hence G(H/L)

is compact. Therefore, by Nobusawa [9], H/L' is locally finite. Let

M = L'Q. Since this is a division subring of H generated over L' by

the elements qx, q2, ■ • ■ , qp, [M: L']t< oo.

Now consider the extension H(F)/L(F). Since H(F)=L(F)H,

H(F)/L(F) is outer galois by (N3). Since Q = L(F)C\H, the restric-
tion mapping p: G(H(F)/L(F))-^>G(H/Q) is an isomorphism. There-

fore, let N be the fixed division subring of p~1(G(H/M)). By the outer

galois theory of Jacobson [5, p. 166] and Nobusawa [9], G(H/M)

is a closed subgroup of G(H/Q) with fixed division subring M. But

the fixed subring of G(H(F)/N)=G(H/M) is Nr\H. Hence Nf~\H
= M. Since [L(F): L]t< oo, it follows from (N2) and (N3) that

VK(VK(L(F))) = VK(VK(H(F))) = H(F). Then [VK(VK(N))'H]i

< oo. Thus from Proposition 1, [N: M] < oo.
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Since i?(F)/L(F) is outer galois and locally finite and HiF)^N

Dl(f), HiF)/N is outer galois and hence locally finite. But then

[N\L']i=[N:M\i[M:L'\i<<x>. Hence H(F)/L' is locally finite.
Since i7(F)3L'(F)2L', [L'iF): !,'],<«. Thus K/L' is locally
finite.

Finally we consider the case where [77 T']r< oo. Then by Proposi-

tion 1, [L':HC\L']i< oo. Since K/HC\L' is locally finite, it follows

that K/L' is also locally finite. This proves the proposition.

Using Theorem Nl and Propositions 1 and 2, we obtain the suffi-

ciency of the following theorem.

Theorem 3. Let K/L be galois and locally finite. Let V be a division

subring of K containing L such that [L': HC\L'] < ». Then a necessary

and sufficient condition for K/L' to be galois is that K/Hf~\L' is galois.

Proof. It only remains to prove the necessity of the theorem.

Therefore, assume that K/L' is galois. Since K/L is galois, K/H is

likewise galois. Let G = GiK/L')GiK/H) be the subgroup generated

by the elements of GiK/L') and G(K/H). Then clearly HC\L' is
contained in the fixed division subring of G.

Thus we see that the crucial remaining result to be sought is one

that characterizes the galois subrings of K contained in H and con-

taining L. This will be done in the next two sections.

4. Previously, Nagahara and Tominaga [7] developed a galois

theory for division rings which satisfied four conditions. Nobusawa

[l 1 ] recently showed that three of these conditions were a consequence

of the condition that the galois extension K/L he locally finite. The

remaining condition was that [7": Z]<<x>. In their paper [7], Naga-

hara and Tominaga showed that if [T: Zl]< °° and K/L is locally

finite, then a necessary and sufficient condition for [T: Z]<&> is

that the galois group GiK/L) he locally compact. We will improve

this result in the following theorem.

Theorem 4. Let K/L be locally finite. Then a necessary and sufficient

condition for [T: Z] < » is that the galois group GiK/L) be locally

compact.

Proof. Let GiK/L) he locally compact. Then there exists a com-

pact neighborhood of the identity, which is a subgroup GiK/L') of

GiK/L) where L' is a finite extension of L. One may verify that

K/L' is also locally finite. Let L" be an arbitrary finite extension of

L' in K. Then Gl"(K/L') is a set of transformations of L" on which

we may place the finite topology. We have mentioned that the re-
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striction mapping p: G(K/L')-^Gl"(K/L') is continuous. Thus

Gl"(K/L') is also compact. Since [L": L']t< oo, the topology of

GL"(K/L') is discrete; hence Gl"(K/L') is finite. In other words, as

every element of K is contained in such a subring as L", every ele-

ment of K has but a finite number of conjugates by elements of

G(K/L').
Let F= VK(L) and T'=VK(L'). By a result of Zelinsky, the cen-

tralizer T' is either infinite and G(K/L') is outer or T' is a finite field

(cf. Nobusawa [l0]). If G(K/L') is outer, then T'=Z. In either case

T'^Z and [r:Z]< oo. By (N2), [U: L]^[T: T']r. Since [L':£]

<oo, it follows that [T: T']r[T': Z]r=[T: Z]< oo.

To prove the converse, we use the notation of the previous para-

graphs. Set H = Vk(T). We assume that [T: Z]< &. Then by [l,

Theorem 13], [K: H]i= [T: Z] < oo. Let xi, x2, • • • , x„ be a left

il-basis for K and let L' be the division ring generated by the ele-

ments xx, x2, ■ • • , xn over the ring L. If L'His the division subring of

K generated by U and H, then L'H = K. Thus Z = VKiL'H)

= VK(L')r\VK(H) = T'r\T^Z. Since F3F', it follows that T'=Z.

Thus G(K/L') is outer. Since [L':i]i is locally finite, G(K/L') is

compact by a result of Jacobson [5, p. 166]. Thus G(K/L) is locally

compact. This completes the proof.

5. Recently Nagahara and Tominaga [8], showed that if [i£:H]

^No and K/L galois and locally galois then Gh(K/L)=G(K/L).
This enables them to conclude that every division subring of H con-

taining L is galois in K. In Theorem 6, we will obtain this result with

the assumption that K/L is locally galois replaced by the assumption

that K/L is locally finite.

Let K/L be a galois and locally finite extension. Denote by G'(K/L)

the set of all isomorphisms of K into itself leaving L fixed. On this

set place the finite topology. It follows directly from Jacobson's ex-

tension theorem [5, p. 162] that every element of G'(K/L) agrees on

each finite subset FEK with an element of G(K/L). Hence G(K/L) is

dense in G'(K/L). In parallel with the situation with the group

G(K/L), it is easily seen that a base for the neighborhoods of an ele-

ment (jEG(K/L) consists of the sets aG'(K/L') where L'/L is a

finite extension. Since G(K/L) is dense in G'(K/L), these sets also

form a neighborhood basis for G'(K/L). Just as with topological

groups, G'(K/L) is a uniform space when we take for the uniformity

on G', the subsets of G' XG' consisting of elements (r, t') where t and

t' agree with some fixed isomorphism into AT of a division ring L'Z)L

such that [Z/: L] < =°. These are the sets (r, t') where TEaG'(K/L')
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and r'EaG'iK/L') for some fixed aEGiK/L) and fixed finite exten-

sion L'/L.

Again denote by GL-(K/L) the set of restrictions of elements of

G'iK/L) to L'DL.

Proposition 5. Let K/L be galois and locally finite. Let [K:H]

=No. Then G'H(K/L) = G(H/L).

Proof. Let fF be the set of all finite subsets of K. Let 5C

= {H(F)\FE$}; clearly 3C is a directed set and U {H(F)\ FE^} =K.
Form the sets G'(H(F)/L) of isomorphisms of H(F) into K leaving

L fixed. Using the restriction homomorphisms pap: G'(H(Fp)/L)

—> G'(H(Fa)/L) where Fp C Fa we form the inverse limit G'

= lim G'(H(Fa)/L). Let pa he the mapping of G' onto the com-

ponent G'(H(Fa)/L). Then by setting for aEG' and xEK, ax

= (paa)x xEH(Fa), it is easy to see that a determines an element

of G'(K/L). Hence G'QG'(K/L). On the other hand, an element of

G' whose components in G(H(Fa)/L) are determined as the restric-

tions to H(Fa) of an element of G'(K/L) is easily seen to be in G'.

Hence G'iK/L) =lim G'(fZ"(F«)/L). We will establish the proposition

by making use of this decomposition.

Set L'=L(F0) and H' = HiFo) where F0 is an arbitrary finite set.

Then L'/L and H'/H are both finite extensions by Proposition 2.

Furthermore, Vk(H') = VKiHL') = VKiH)C\ VK(L') = VK(L)C\ VK(L')

= VK(L') as L'2L. This means, first of all, that VH>(L') = VK(L')r\H'

= Vh'(H'). Hence G(H'/L') contains only outer automorphisms. Also

we see that Vk(Vk(L'))=H'. Hence H' is left invariant by the ele-

ments of GiK/L').

We claim that H' is left invariant by the elements of G'(K/L');

that is, if aEG'(K/L'), then aH'QH'. Indeed, if this were not true,

then there would exist a finite subset FEU' such that aF is not con-

tained in H'. Now K/L' is galois by Theorem Nl and locally finite

since [L':L];<°°. Hence by Jacobson's extension theorem, there

exists an extension a' of the restriction of the isomorphism a on the

finite extension L'(F)/L' to an automorphism of K. But we have seen

then that a'H'=H'; hence aL'(F)=a'L'(F)QH', which is a contra-

diction. This argument also shows that the group GiH'/L') is dense

in G'iH'/L'), the set of isomorphisms of H' into K.

Next we claim that G'iH'/L') is locally compact in the finite topol-

ogy and that G'iH'/L') = GiH'/L'). As argued before, H'/L' is galois

and locally finite. Furthermore, GiH'/L') contains only outer auto-

morphisms. It then results from [5, p. 166] or [9] that GiH'/L') is

compact. Hence GiH'/L') is closed and dense in G'(H'/L'). This
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means that G'(H'/L') =G(H'/L') is compact. This is then still true

for G'(H'/L") when H'Z)L"^L'. Thus the sets {aG'(H'/L")} where

L"Z)L' and [L": L] < oo and aEG(H'/L) form a compact neighbor-

hood basis for G'(H'/L).

Now let H(ZjHi~2)H and H'JH be a finite extension. Let

p: G'(H{/L)^>G'(H2 /L) be the restriction homomorphism. Clearly

p is uniformly continuous. We wish to show that p is open and onto.

Let G'(H{ /L{) = G(H( /L{) be a compact open subgroup of G'(H{/L).

Then pG'(H{/L) is a compact subgroup of G'(H2 /L). On the other

hand, for any element xEHi such that x(JjZ,/niZ2', there exists an

isomorphism aEG'(H2/L{) such that axy^x. Hence the division ring

left fixed by all the elements of pG'(H{/L() is L{C\Hl. Since

pG'(H{/L{) is a group, Hl/L{r\Hl is galois. Since L[^L{C\H{,
[L{C\H2': L]i< oo, and H(/L{C\H{ is locally finite. As argued pre-

viously, pG'(H'i/L'x) is dense in the open and closed set

G'(Hi/L(r\Hi). Hence PG'(H{(L{)=G'(Hi/L{C\H{) is open and

one may easily verify that p is open.

Just as in the case of topological groups, it follows that because

G'(H{ /L) and G'(H2/L) are locally compact, they are complete.

But then the images of G'(H{ /L) by uniformly continuous open

mappings are complete and hence closed. Thus pG'(H{ /L) is a closed

subset of G'(H2 /L). But the restriction of any element <r of G'(H2 /L)

to a finite subset F oi K defines an isomorphism of L(F) into K. By

Jacobson's extension theorem, this may be extended to an automor-

phism of K and thus certainly to an isomorphism of H{ into K.

Thus a agrees on F with some element of pG'(Hx'/L). Hence

pG'(Hx'/L) is dense in G'(H{ (L) and pG'(H{/L) =G'(H2'/L); thus p

is onto.

We next show that the restriction homomorphism p0: G'(K/L)

-^G'(H/L) is onto. Because [K: H]t^\A0, there exists a cofinal sub-

set {Hi\i= 1, 2, • • • } C3C such that Hi/H is a finite extension and

K = \JfLx Hi. Furthermore, each restriction homomorphism

pafs: G'(H(F9)/L)-*G'(H(Fa)/L) has been shown to be onto. Under

these conditions, it follows from [3] (cf. also [2, Chapter 8]) that p0

is onto. Since we have already shown that G'(H/L)=G(H/L), the

proof is complete.

Theorem 6. Let K/L be galois and locally finite. Let [K: H] i g N 0-

Then if L' is a division subring of H containing L, K/L' is galois.

Proof. We here refer to Jacobson [5, Chapter VI] in order to

use a theorem of Nakayama. There the galois theory of a ring 2

of all linear transformations of a left vector space 2ft over a division
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ring A is discussed. The elements of 2 are taken to be right operators

on 9Ji. A subring 21 of 8 is said to be weakly galois il it is the centralizer

of a set Lt of semilinear transformations of ffll over A. The elements of

U are to be considered as left operators on 9JJ.

We set M = K and take for 2 the division ring KB of right multipli-

cations induced by elements of K. We take A=KL the ring of left

multiplications induced by the elements of K. Let U = ©Ac where the

sum is over all isomorphisms a EG'(K/L'). Let 21 be the centralizer

of U in the ring of all additive endomorphisms of 9JJ. Then 21 is weakly

galois. Since UDA, 21 is a division subring of % = KR. More than this

21, we claim, is the division subring L'B induced by L'. Indeed, 21 is

determined as the fixed ring of G'(K/L'). But it easily follows that

L' is the fixed ring of G(H/L'). Thus from Proposition 5, L' is the

fixed ring of G'H(K/U) and thus of G'(K/L'). Hence 21 = L'R.

We wish to show that 21 is a galois subring of 8; that is, we wish to

establish that ll is generated by invertible semilinear transformations.

To do this, observe first that the four conditions of [5, Proposition

6.11.2, p. 146] are satisfied. Indeed, the first two are trivially true.

That the last two hold follows from the fact that any subring of the

ring of additive endomorphisms of 2ft which contains A is an irreduci-

ble and, hence, homogeneous ring of transformations. Also it follows

from this proposition that 2IA is an irreducible and, hence, homogene-

ous ring of transformations. But then from Nakayama's theorem

[5, Proposition 6.11.3, p. 147], it follows that 21 is a galois subring of

8 = A7s. Since $l = L'R, L' is a galois subring of K.

6. We wish to characterize the subgroups of a galois group which

are themselves galois groups. We say that a group of automorphisms

is regular il it contains all the inner automorphisms which are gener-

ated by the elements of the centralizer of its fixed division subring.

We now prove the following result.2

Proposition 7. Let K/L be locally finite and galois. Let G' be a

regular closed subgroup of G(K/L), with fixed division subring L. Then

G' = G(K/L).

Proof. Set G = G(K/L). Let L' be an arbitrary finite extension of

L. We show that GL.=G'V. Clearly G^G'; so GL^G'h,. But by

Jacobson's extension theorem [2, p. 162], it follows from the regular-

ity of G'L< that every isomorphism of L' into K contained in G^ can

2 I wish to thank Professors Rosenberg and Zelinsky for pointing out that our

result actually follows directly from Jacobson's extension theorem as above and for

their comments in general.
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be extended to an element of G'. Hence G£OG7'. Thus G and G'

agree on every finite subset of K and, therefore, their closures are

identical. By the hypothesis of the proposition G = G'.

From this one may conclude that the regular closed subgroups of

G(K/L) are the galois groups G(K/L') of the galois extensions K/L',

where L'Z)L. Given a closed subgroup G of G(K/L), let L(G) be its

fixed subring. Let H(G) = VK(VK(L(G))) and H= VK(VK(L)). Then if

[H(G): H]i< oo, G is said to have finite degree. Likewise, a division

ring L'Z)L is said to have finite degree if [T: T']r< °° .

Theorem 8. Let K/L be a galois and locally finite extension and let

[K: H] 5^0- Then there exists a one-to-one correspondence between the

regular closed subgroups G of finite degree and the division subrings L'

of finite degree of K containing L. Furthermore, G(K/L(G))=G and

L(G(K/L'))=U.

This theorem establishes the galois theory we promised; its proof

is direct from Theorems 3, 6 and Proposition 7.

7. Remarks. Under stronger hypotheses, of course, it is much

easier to establish the results of this paper. For example, if one as-

sumes that GiK/L) is locally compact, then, as we have argued,

G(K/L) is complete and the restriction homomorphism p: G(K/L)

—*G(H/L) is uniformly continuous and open; thus pGiK/L) is closed

in GiH/L). Since'pGiK/L) is dense in GiH/L), PGiK/L)=GHiK/L)
— GiH/L). This short argument can replace Proposition 5 and Theo-

rem 6.

Another interesting result is obtained by noticing that the proof of

Proposition 5 establishes the fact that G'iK/L) is the inverse limit of

complete topological spaces and hence is complete whenever K/L is

galois and locally finite. Since Jacobson's extension theorem shows

that GiK/L) is dense in G'iK/L), it follows that a necessary and suffi-

cient condition for all isomorphisms of K leaving L fixed to be auto-

morphisms is that GiK/L) be complete in its uniform topology. That

G'iK/L) is complete also follows simply from the fact that G'(K/L)

is a closed subset of the space KK of functions of K into K. When K

is discrete, KK is complete.

The case of locally finite dimensional extensions has been con-

sidered frequently in the literature. An extension K/L is said to be

locally finite dimensional (l.f.d.) if for every finite subset FEK,

[L(Fa): L]i < oo where here F° denotes the set of images of elements

of F by the elements of G.

Now if K/L is galois and l.f.d., there exists a directed set 91 of
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finite extensions N/L such that each NE'Sl is normal in K/L. But

since G(N/L) is discrete Gn(K/L) =G(N/L). Again using the restric-

tion homomorphisms, form the inverse limit lim G(N/L) where

NE$l. As we argued in a similar situation in the proof of Proposition

5, G(K/L) = lim G(N/L). Since each group G(N/L) is discrete,

it is complete. Hence G(K/L) is complete. We have proved the fol-

lowing proposition.

Proposition 9. Let K/L be galois and locally finite dimensional.

Then G(K/L) is complete in its uniform topology.
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