
ON TYPICALLY-REAL FUNCTIONS IN A CUT PLANE

BY E. P. MERKES

1. Introduction. Let

(1.1) w= fiz) = z + a2z2 + ■ ■ ■ + anz" + - ■ ■

be regular in \z\ <1 and real valued if and only if z is real and

—1<2<1. Then/(z) is said to be typically-real in the unit circle.

Rogosinski [3] has shown that a necessary and sufficient condition

for a regular function/(z) in \z\ <1, where /(0) =0, /'(0) = 1, to be

typically-real is that

(1.2) fiz) = —-^—0(z),        ^(0) = 1,
1 — z2

where qb(z) is regular, real for real z, and has positive real part for

\z\ <1. Furthermore, if «/=/(z) maps each circle \z\ =r<l into a

contour having the property that every line parallel to the imaginary

axis cuts this contour in at most two points, then f(z) is said to be

convex in the direction of the imaginary axis. A necessary and suffi-

cient condition that f(z) be convex in the direction of the imaginary

axis is that zf'(z) be typically-real in the unit circle [l; 2].

It is the main purpose of this paper to display a connection between

typically-real functions on one hand and Stieltjes transforms and

continued fractions on the other. To this end consider first a function

F(f) which is real valued for real f and regular in the complex plane

cut along the negative real axis from — oo to — 1. If, further, F(0) =0,

F'i0) = l, and Im Fi£)9*0 for nonreal values of f in this cut plane,

the function F(f) is said to be typically-real in the cut plane. The

class of all such functions F(f) is denoted by T[— oo, — l]. On the

other hand, if F(0) = 1 and Re Ftf) >0 for f in this cut plane, we say
that F(f) is in the class R[- *>, -l].

If the usual agreements are made regarding the normalization, a

similar definition can be given for a function to be typically-real in

the complex plane cut along the real axis from a to b such that the

cut does not include both 0 and oo. In each case there is a linear frac-

tional transformation with real coefficients which carries such a func-

tion into one which, except for the normalization, is in the class

T[ — oo, — 1 ]. For this reason attention is confined to the latter class.
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2. Some characterizations. The univalent transformation

42
(2.1) f=-

(1-Z)2

maps the disc \z\ <1 onto the f-plane cut along the negative real

axis from <=° to — 1. Since Im f = 4(1 — 12] 2)_1 Im 2, the function

1      f     42     "I
(2.2) /(*)=— F\-JK 4     L(1-2)2J

is typically-real in the unit circle whenever F(£) is in the class

T[ — 00, — 1 ] and conversely. Thus there is a one-to-one correspond-

ence between the class T[— 00, — l] and the class of typically-real

functions in the unit circle.

By (1.2) and (2.2) we obtain, after the change of variable (2.1),

the following restatement of the cited theorem of Rogosinski:

Theorem 2.1. F(%) is in T[— °o, —l] if and only if there exists a

function $(£■) in the class R [ — 00, — 1 ] such that

(2.3) F(0 =-#(f),
V ' ^' (1   _|_ £)l/2        W"

where that branch of (1 +f)1/2 is chosen in the cut plane which is positive

at£ = 0.

It is known [6, p. 278] that $(f) is in R[- 00, -l] if and only if

there exists a nondecreasing function a(t) on O^/^l such that a(l)

-a(0) = 1 and

/'l   da(t)

0   1 + f /

Thus we have the following result:

Corollary 2.1. A necessary and sufficient condition for F(f) to be

in T[— 00, — l] is /to 2/tere exw/5 a nondecreasing function a(t) on

O^t^l such thata(l)-a(0) = l and

C 1 Sda(t)

By well-known [6, p. 263] relations between the Hausdorff moment

problem and 5-fractions, the following corollaries are obtained from

the above:



i959l ON TYPICALLY-REAL FUNCTIONS IN A CUT PLANE 865

Corollary 2.2. F(f) is in T[— <*>, — l] if and only if

(2.6) F(0-1      (1 " g°)gir       •••      (1 " g"W        -..,
1 + 1 + + 1 +

where 0^gn^l, n — 0, 1, 2, • • • .

Corollary 2.3. Let

(2.7) F(f) = r ~ «2f2 + a3f3 - • ■ • + (-1)»+W" + • • • ,

Tftew F(f) is in T [ — oo, —l] if and only if the sequence 1, a2, a3, • ■ ■ ,

an, • • ■  is totally monotone.

By (2.1), (2.2), and (2.6) we obtain, after an equivalence trans-

formation, the following continued fraction characterization of this

class:

Theorem 2.2. A necessary and sufficient condition for fiz) to be

typically-real in the unit circle is that fiz) have a continued fraction ex-

pansion of the form

z     T    1 4(1 - go)giZ
/(*) = :- :-■ ,  —:- ,   " '

1 — zLl — z +        1 — z       +
(2.8)

4(1   ~   gn)gn+lZ 1

+ l-z +'"}'

where 0^g„^l, » = 0, 1, 2, • • • .

The correspondence between the classes under consideration can

also be used to characterize typically-real functions in |z| <1 in

terms of Schur summability. For this purpose let giz) = X^°°-=o ci( —%)',

Gi^) = E;=o Yy(-f)' be related by

(2.9) — (1 - z)g(z) = G^),       f = 4z/(l - z)2.

The transformation from the sequence sn = zZ"=o ci to the sequence

5„= zZ%o7> by means of the identity (2.9) is called the (^-trans-

formation. The sequence {sn} is said to be (S)-summable to the

value 5 if 5' = limn^M5n. Scott and Wall [4] have introduced and

studied in detail this consistent method of summability.

Theorem 2.3. Let fiz) = zZ?=o aiz'\ flo = 0, «i = 1, be regular and real

for real z in the unit circle.  Then fiz) is typically-real in \z\ <1 if
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and only if the sequence {l + ( — l)n(an+2 — an)/2}„°„0 is (S)-summable

to a value not exceeding unity and such that {Sn — 5„_i}"=0, where

5_i=0 and the sequence Sn is the (S)-transform of the given sequence, is

totally monotone.

Proof. By (2.4) and the characterization of Rogosinski f(z) is

typically-real in the unit circle if and only if

(1-zyrjl + z)2 1     (i-zyri + z -i

~^-[-^fiz) -1\= —^rl—,*® - >J
i r i r r1 da(t)      "i

(2.io)   = — [(i + r)1/2*(f) - i = — (i + r) I   —rf-i

r1  (1 - t)da(t)

Jo 1 + f /

wheref = 42/(l-2)2, $>(£) =<p(z), and a(l) -a(0) = 1. Let G(f) be the

function represented by the integral in (2.10). Then {yj} is totally

monotone and Xd%7y=l where G(£) = ^107y( — D' for |f|<l
[6, p. 284]. Moreover, if the left-hand side of (2.10) is taken to be the

function (1— z)g(z)/2 in (2.9), it is easily seen that sn=^J}-oci

= l + ( — l)n(an+2 — an)/2. The theorem now follows at once from the

definition of (5)-summability.

3. Some properties of the class T[— oo, — l]. Among other con-

siderations the following theorem yields some properties of 5-frac-

tions of the form (2.6):

Theorem 3.1. If F(^) is in T[— oo, — l], then it is univalent for

Re f > — 1. This result is sharp. Moreover, F(f) is convex in the direc-

tion of the imaginary axis for | f ] < 1.

The domain of univalence, Re f > — 1, for the class is obtained by

a trivial adjustment of a proof given by Thale [5, p. 233]. That the

result is sharp is established by considering the following functions of

r[-«, -1]:

(3.1) F(f;C) = f(1"|"f), 0<C<1.
1 + f

It is easily seen that for any two distinct points fi and fo in the upper

(lower) half-plane and on the line Re f = — 1 there is a constant c0,

0<c0<l, such that F(ft; c0) = F(Z2; c0).

c In order to prove that F(f) is convex in the direction of the imagi-

nary axis, note that by (2.5)
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(3.2) Im[fF'(f)] = Imf f' * ~ ,   7If Ml).
Jo    | 1 + f t\4

It immediately follows that fF'(f) is typically-real. This yields the

desired result.

It is interesting to note [5] that the domain of univalence for the

class T[ — oo, — 1 ] in Theorem 3.1 is also a sharp domain of univalence

for functions of the form F(f)/f, where F(f)(^f) is in T[— oo, —l].

One way to see this is to observe that by (2.7)

(3.3) F{$)/S = 1 - a2/7(f).

By a property of totally monotone sequences it now follows from

Corollary 2.3 that Fi(f) is in T[— oo, — l]. The univalence of Fi(f)

then implies that of F(f)/7

4. A domain of univalence for typically-real functions in the unit

circle. Let /(z) be typically-real in the unit circle. By the one-to-one

correspondence of §2 there exists a function F(f) in T[— oo, — l]

such that (2.2) holds. From Theorem 3.1 and the fact that (2.1) is a

univalent transformation, we conclude that /(z) is univalent for

(4.1) ReT-—1 > - 1.
L(l - z)2J

The region (4.1) can be expressed in the form given in the following

result:

Theorem 4.1. If fiz) is typically-real in the unit circle, then fiz) is

univalent for z in the domain D bounded by the circular arcs z = rew,

where

(4.2) r = (1 + sin2 0)1'2 —  | sin 6> j , 0 ^ 0 < 2*-.

The result is sharp in the sense that any open region of univalence for

this class of functions which contains D is coincident with D.

The sharpness result of the theorem follows from that for the class

r[-co, -i].

The largest circular domain with center at the origin and contained

in the domain D has radius (2)1'2 — 1.

Corollary 4.1. If fiz) is typically-real in the unit circle, then fiz) is

univalent in the disc \z\ < (2)1/2 — 1. This circular domain of univalence

cannot be replaced by a larger circular domain with center at the origin

in which each function of the class under consideration is univalent.

The function
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(4.3) f(Z)   =  2(1 + 22)/(l   -  22)2

is typically-real in the unit circle. Moreover, since the derivative of

this function vanishes at 2= ± ((2)1'2 — l)i, (4.3) is not univalent in

any larger circular domain with center at the origin than that given

in Corollary 4.1.
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ON THE POLE AND ZERO LOCATIONS OF RATIONAL
LAPLACE TRANSFORMATIONS OF NON-NEGATIVE

FUNCTIONS

ARMEN H. ZEMANIAN

Let a(t) be a real, bounded function of the real variable t defined

in the interval, 0^/< oo, and let its Laplace-Stieltjes transform,

(1) F(s) =  f   e~"da(t),
J o

be a rational function of the complex variable s = a+ico, having at

least as many poles as zeros. F(s) may be written as

n is - vd n is - vd

(2) **> = "?-T-
II is- Pi) His- ^)
1=1 1=1

where the tj,- and p,- are real and the vt and £,- are complex. Under these
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