
A FUNCTIONAL EQUATION PROPOSED BY R. BELLMAN

E. G. STRAUS

R. Bellman (Bull. Amer. Math. Soc. vol. 64 (1958) p. 178, problem
14) has posed (essentially) the following problem:

Let/(wo, Mi, ■ • • , un) be analytic for m0^0 and satisfy the func-

tional equation

(1) f(uv, (md)', ■ • ■ , (uv)M) = f(u, u', ■ ■ ■ , uM) +f(v, V, • • • , VM)

ior arbitrary x and arbitrary nonzero n times differentiable functions

u(x), v(x). What is the form of/ for general n?

At the suggestion of R. Bellman and of N. J. Fine (who has given

another solution of this problem),1 we give here a solution which

seems to stress the proper setting of the problem.

Set u = e", v = e'; then we can write

f(u, «',-■■, «<»>) = g(s, s', • • • , *<»>),

and the functional equation (1) becomes

(2) g(s + l,s' + t',- ■-, sW + /(«>) = g(s, ■■■, |W) + g(l, • • •, tM)

ior arbitrary x, and arbitrary n times differentiable s, t.

Applying (2) to the functions

"   sk(x — x0)h

s = £ —r;—
Jfc-0 Kl

we get for G(s) =g(s, s', ■ ■ ■ , s(n)) that at x = x0

GW,G(Ef±^).SG(2t^.*)

= g(Jo, 0, • • • , 0) + g(0, 5i, 0, • • • , 0) + • • •

+ g(0, 0, • • ■ , 0, sn)

n

=   Z) gki.Sk).

As a result of (2) we see that each of the functions gk(sk) is additive.

Summing up we have the following
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1 Solutions have also been given by W. F. Trench and by J. Aczdl and M. Hosszu.
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Theorem 1. Letf(x, u0, «i, u2, • • • , un) be a function of n+2 vari-

ables so that

f(x,uv, (uv)', ■ ■ ■ , (uv)M)
(4)

= /(*, u,u',- ■ ■ , uM) +f(x, v, v', ■ • • , »<»>)

for all x and all nonzero n times differentiable u, v. Then

n

f(x, u,u', ■ • • , uM) = zZ /*(#> dk log u/dxk)
fc=0

where each fk(x, y) is additive in y. In particular, under any one of the

usual conditions (e.g., continuity, mea sur ability, boundedness) on

7(x, y) as a function of y we obtain

" dk log u

(5) /(*, u',- ■ ■ , «<«>) = 2Z «*(*) —Tl— -
k-o dx"

In Bellman's problem/ did not directly depend on x so that the ak

in (5) would be constant.

We can now make several observations. The first (whose formula-

tion is due to R. Steinberg) is that the function uv in (1) and (4)

could be replaced by \j/(u, v) =<pi(4>t(u) +<p2(v)), where d>{ is an n times

differentiable function and <p2 ?*0, where the range of <pt is the entire

real line. So we have the following

Theorem 2. Letf(x, u0, ui, • • • , un) be a function of n+2 variables

so that

...  /(*, *(«,»), (*(«,»))', • • •, (*(«, v))M)
(°)

= f(x, u, ■ ■ ■ , uM) +fix, v, • • ■ , *<">).

Then

"       /   dkd>t(u)\
(7) f(x, u,u',- ■■, «<»>) = zZfk (x,—^) + a(x)

*-o      \       dx"   /

where fk(x, y) is additive in y, and under suitable regularity conditions

JL dkd>2(u)
(V) f{x, u,u',- ■ -, «(»)) = £ «*(*) —T1 + «(*)•

*-o dxh

Proof. We set s=<p2(u), t=<f>2(v). Then we can write

/(*, «,«',-••» uM) = g(x, s, ■ ■ • , s^)i = gix, s) for short)

and
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f(x, 4>x(s), • • • , <pi(s)M) = h(x, s, ■ • • , s<n>)( = h(x, s) for short).

Thus (6) becomes

(6') *(*, s +/,••• , *W + /<">) = g(x, 5, • • • , *(»>) + g(x, t, ■ ■ ■ , *«»))

for all re times differentiable functions s, ( at a point x.

For ( = 0we obtain

h(x, s) = g(x, s) + g(x, 0) = g(x, s) + a(x)

and for

k(x, s) = g(x, s) — a(x) = h(x, s) — 2a(x)

equation (6') becomes

(6") k(x, s + t) = k(x, s) + k(x, t).

This equation is analogous to (2) and leads to (7). We can now use

(7) to analyze the functions <pi and a to obtain

<bx(u) = tb^iu + c)    and    a(x) = f0(x, c)

ior some constant c.

Finally the fact that differentiation operators only were used was

merely due to the fact they satisfy relations of the form

Dkf(s) = g(s, Ds, D2s, • • • , Dks)

for all k times differentiable 5 and arbitrarily given k times differenti-

able /. We could replace these Dh by arbitrary linear operators

Tx, ■ • ■ , Tn which satisfy identities of the form

(8) (Ti<px(s))(x) = gi(s, Txs, ■ ■ ■ , T„s)        i = 1, • • • , re

for all x, all 5 in the prescribed function space and the function <px as

in Theorem 2.

It is quite unnecessary to restrict the operator f(u, u', ■ ■ ■ , w(n))

to dependence on a finite number of derivatives; the same result

would hold if we had a differential operator of infinite order, or more

generally, if we had operators 7\- satisfying (8) and so that for every

x there exist functions s, with (T{Sj)(x) =5,-j.

We forego the statement of this theorem in all its gruesome gen-

erality.
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