A FUNCTIONAL EQUATION PROPOSED BY R. BELLMAN

E. G. STRAUS

R. Bellman (Bull. Amer. Math. Soc. vol. 64 (1958) p. 178, problem 14) has posed (essentially) the following problem:

Let $f\left(u_{0}, u_{1}, \cdots, u_{n}\right)$ be analytic for $u_{0} \neq 0$ and satisfy the functional equation
(1) $f\left(u v,(u v)^{\prime}, \cdots,(u v)^{(n)}\right)=f\left(u, u^{\prime}, \cdots, u^{(n)}\right)+f\left(v, v, \cdots, v^{(n)}\right)$
for arbitrary x and arbitrary nonzero n times differentiable functions $u(x), v(x)$. What is the form of f for general n ?

At the suggestion of R. Bellman and of N. J. Fine (who has given another solution of this problem), ${ }^{1}$ we give here a solution which seems to stress the proper setting of the problem.

Set $u=e^{s}, v=e^{t}$; then we can write

$$
f\left(u, u^{\prime}, \cdots, u^{(n)}\right)=g\left(s, s^{\prime}, \cdots, s^{(n)}\right)
$$

and the functional equation (1) becomes
(2) $g\left(s+t, s^{\prime}+t^{\prime}, \cdots, s^{(n)}+t^{(n)}\right)=g\left(s, \cdots, s^{(n)}\right)+g\left(t, \cdots, t^{(n)}\right)$
for arbitrary x, and arbitrary n times differentiable s, t.
Applying (2) to the functions

$$
s=\sum_{k=0}^{n} \frac{s_{k}\left(x-x_{0}\right)^{k}}{k!}
$$

we get for $G(s)=g\left(s, s^{\prime}, \cdots, s^{(n)}\right)$ that at $x=x_{0}$

$$
\begin{align*}
G(s)= & G\left(\sum \frac{s_{k}\left(x-x_{0}\right)^{k}}{k!}\right)=\sum G\left(\frac{s_{k}\left(x-x_{0}\right)^{k}}{k!}\right) \\
= & g\left(s_{0}, 0, \cdots, 0\right)+g\left(0, s_{1}, 0, \cdots, 0\right)+\cdots \\
& +g\left(0,0, \cdots, 0, s_{n}\right) \tag{3}\\
= & \sum_{k=0}^{n} g_{k}\left(s_{k}\right) .
\end{align*}
$$

As a result of (2) we see that each of the functions $g_{k}\left(s_{k}\right)$ is additive. Summing up we have the following

Received by the editors December 29, 1958 and, in revised form, February 2, 1959.
${ }^{1}$ Solutions have also been given by W. F. Trench and by J. Aczel and M. Hosszá.

Theorem 1. Let $f\left(x, u_{0}, u_{1}, u_{2}, \cdots, u_{n}\right)$ be a function of $n+2$ variables so that

$$
\begin{align*}
f\left(x, u v,(u v)^{\prime}, \cdots\right. & \left.(u v)^{(n)}\right) \tag{4}\\
& =f\left(x, u, u^{\prime}, \cdots, u^{(n)}\right)+f\left(x, v, v^{\prime}, \cdots, v^{(n)}\right)
\end{align*}
$$

for all x and all nonzero n times differentiable u, v. Then

$$
f\left(x, u, u^{\prime}, \cdots, u^{(n)}\right)=\sum_{k=0}^{n} f_{k}\left(x, d^{k} \log u / d x^{k}\right)
$$

where each $f_{k}(x, y)$ is additive in y. In particular, under any one of the usual conditions (e.g., continuity, measurability, boundedness) on $f_{k}(x, y)$ as a function of y we obtain

$$
\begin{equation*}
f\left(x, u^{\prime}, \cdots, u^{(n)}\right)=\sum_{k=0}^{n} a_{k}(x) \frac{d^{k} \log u}{d x^{k}} \tag{5}
\end{equation*}
$$

In Bellman's problem f did not directly depend on x so that the a_{k} in (5) would be constant.

We can now make several observations. The first (whose formulation is due to R. Steinberg) is that the function $u v$ in (1) and (4) could be replaced by $\psi(u, v)=\phi_{1}\left(\phi_{2}(u)+\phi_{2}(v)\right)$, where ϕ_{i} is an n times differentiable function and $\phi_{2}^{\prime} \neq 0$, where the range of ϕ_{2} is the entire real line. So we have the following

Theorem 2. Let $f\left(x, u_{0}, u_{1}, \cdots, u_{n}\right)$ be a function of $n+2$ variables so that

$$
\begin{align*}
f\left(x, \psi(u, v),(\psi(u, v))^{\prime}, \cdots\right. & \left.(\psi(u, v))^{(n)}\right) \tag{6}\\
& =f\left(x, u, \cdots, u^{(n)}\right)+f\left(x, v, \cdots, v^{(n)}\right)
\end{align*}
$$

Then

$$
\begin{equation*}
f\left(x, u, u^{\prime}, \cdots, u^{(n)}\right)=\sum_{k=0}^{n} f_{k}\left(x, \frac{d^{k} \phi_{2}(u)}{d x^{k}}\right)+a(x) \tag{7}
\end{equation*}
$$

where $f_{k}(x, y)$ is additive in y, and under suitable regularity conditions

$$
f\left(x, u, u^{\prime}, \cdots, u^{(n)}\right)=\sum_{k=0}^{n} a_{k}(x) \frac{d^{k} \phi_{2}(u)}{d x^{k}}+a(x)
$$

Proof. We set $s=\phi_{2}(u), t=\phi_{2}(v)$. Then we can write

$$
f\left(x, u, u^{\prime}, \cdots, u^{(n)}\right)=g\left(x, s, \cdots, s^{(n)}\right)(=g(x, s) \text { for short })
$$

and
$f\left(x, \phi_{1}(s), \cdots, \phi_{1}(s)^{(n)}\right)=h\left(x, s, \cdots, s^{(n)}\right)(=h(x, s)$ for short $)$.
Thus (6) becomes
$\left(6^{\prime}\right) h\left(x, s+t, \cdots, s^{(n)}+t^{(n)}\right)=g\left(x, s, \cdots, s^{(n)}\right)+g\left(x, t, \cdots, t^{(n)}\right)$
for all n times differentiable functions s, t at a point x.
For $t=0$ we obtain

$$
h(x, s)=g(x, s)+g(x, 0)=g(x, s)+a(x)
$$

and for

$$
k(x, s)=g(x, s)-a(x)=h(x, s)-2 a(x)
$$

equation (6^{\prime}) becomes

$$
k(x, s+t)=k(x, s)+k(x, t)
$$

This equation is analogous to (2) and leads to (7). We can now use (7) to analyze the functions ϕ_{1} and a to obtain

$$
\phi_{1}(u)=\phi_{2}^{-1}(u+c) \quad \text { and } \quad a(x)=f_{0}(x, c)
$$

for some constant c.
Finally the fact that differentiation operators only were used was merely due to the fact they satisfy relations of the form

$$
D^{k} f(s)=g\left(s, D s, D^{2} s, \cdots, D^{k} s\right)
$$

for all k times differentiable s and arbitrarily given k times differentiable f. We could replace these D^{k} by arbitrary linear operators T_{1}, \cdots, T_{n} which satisfy identities of the form

$$
\begin{equation*}
\left(T_{i} \phi_{1}(s)\right)(x)=g_{i}\left(s, T_{1} s, \cdots, T_{n} s\right) \quad i=1, \cdots, n \tag{8}
\end{equation*}
$$

for all x, all s in the prescribed function space and the function ϕ_{1} as in Theorem 2.

It is quite unnecessary to restrict the operator $f\left(u, u^{\prime}, \cdots, u^{(n)}\right)$ to dependence on a finite number of derivatives; the same result would hold if we had a differential operator of infinite order, or more generally, if we had operators T_{i} satisfying (8) and so that for every x there exist functions s_{i} with $\left(T_{i} s_{j}\right)(x)=\delta_{i j}$.

We forego the statement of this theorem in all its gruesome generality.

