SOLUTIONS OF FIRST ORDER DIFFERENTIAL EQUATIONS WHICH ARE SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER¹

LAWRENCE GOLDMAN

Let $\mathfrak F$ be an ordinary differential field (i.e., a field with a given derivation) of characteristic zero. An element z belonging to a differential field extension of $\mathfrak F$ is said to be of order r over $\mathfrak F$ if the lowest order irreducible differential equation with coefficients in $\mathfrak F$ that z satisfies is of order r. It follows that z is of order r over $\mathfrak F$ if and only if the degree of transcendency of $\mathfrak F\langle z\rangle$ over $\mathfrak F$ is r.

In [4] Ritt proved that if P, $Q \in \mathfrak{F}\{y\}$ and Q vanishes for every zero of P then the sum of the lowest (highest) degree terms of Q vanishes for every zero of the sum of the lowest (highest) degree terms of P.

For our purpose we need the following slight generalization; it can be obtained either by essentially the same proof as used by Ritt, or as an almost immediate corollary of this theorem.

THEOREM 1. Let P, $Q \in \mathfrak{F}\{y\}$ and let Q vanish for every zero of P which is of order $\geq r$ over \mathfrak{F} ; then the sum of lowest (highest) degree terms of Q vanishes for every zero of the sum of lowest (highest) degree terms of P which is of order $\geq r$ over \mathfrak{F} .

THEOREM 2. Let z be a zero of an nth order linear differential polynomial $L(y) \in \mathfrak{F}\{y\}$ and let the order of z over \mathfrak{F} be 1. Then there exists an integer r, $0 \le r < n$, such that $z^{(r)}$ is a zero of an irreducible first order differential polynomial $P(y) \in \mathfrak{F}\{y\}$ the sum of whose highest degree terms is of order 1 and $z^{(r)}$ is of order 1 over \mathfrak{F} .

PROOF. Since z is of order 1 over \mathfrak{F} , $\mathfrak{F}(z) = \mathfrak{F}(z,z')$, which is an algebraic function field of one variable over \mathfrak{F} . Let v be an infinite valuation on $\mathfrak{F}(z,z')$ such that v is trivial on \mathfrak{F} and for any Q(z), $R(z) \in \mathfrak{F}[z]v(Q/R) = \text{degree of } R - \text{degree of } Q$. Since z is a zero of an nth order linear differential polynomial we can not have $v(z^{(s+1)}) < v(z^{(s)})$ for all s less than n. Let r be the smallest integer such that $v(z^{(r+1)}) \geq v(z^{(r)})$; then the order of $z^{(r)}$ over \mathfrak{F} is 1. For, $z^{(r)} \in \mathfrak{F}(z)$ so that the order of $z^{(r)}$ over \mathfrak{F} is ≤ 1 ; if $z^{(r)}$ were algebraic over \mathfrak{F} then $v(z^{(r)})$ would be zero, which is greater than v(z), contradicting our assumption on the minimality of r. Let $P(y) \in \mathfrak{F}\{y\}$ be the first order ir-

Received by the editors March 19, 1959.

¹ This research was supported by the National Science Foundation.

reducible differential polynomial which vanishes for $z^{(r)}$. Since at least two terms of $P(z^{(r)})$ must have the same smallest value under the given valuation v, it follows that the highest degree terms of P(y) are of order 1.

A homogeneous linear differential polynomial $L(y) \in \mathfrak{F}\{y\}$ is said to be linearly reducible over \mathfrak{F} if there exist homogeneous linear differential polynomials M(y), $N(y) \in \mathfrak{F}\{y\}$, each one of positive order, such that

$$L(y) = M(N(y)).$$

If no such decomposition exists we say L(y) is linearly irreducible over \mathfrak{F} .

THEOREM 3. Let $L(y) \in \mathfrak{T}\{y\}$ be a homogeneous linear differential polynomial linearly irreducible over \mathfrak{T} . If a zero z of L(y) is of order 1 over \mathfrak{T} , then there exists a fundamental system of zeros (u_1, \dots, u_n) of L(y) such that $u_i \not \setminus u_i$, $i = 1, \dots, n$, is algebraic over \mathfrak{T} .

PROOF. Since L(y) is linearly irreducible over $\mathfrak F$ it suffices² to show the existence of one zero u of L(y) such that u'/u is algebraic over $\mathfrak F$ [2]. By Theorem 2 there exists an integer r such that $z^{(r)}$ is a zero of a first order differential polynomial $P(y) \in \mathfrak F\{y\}$ the sum of whose highest degree terms is of order 1. Because L(y) is linearly irreducible there exist homogeneous linear differential polynomials M(y), $N(y) \in \mathfrak F\{y\}$, M(y) linearly irreducible over $\mathfrak F$, such that $M(z^{(r)}) = 0$ and, for any nontrivial zero w of M(y), N(w) is a nontrivial zero of L(y) [5, vol. 2, pp. 164, 165]. By Theorem 1 there exists a nontrivial zero w of the sum of the highest degree terms of P(y) such M(w) = 0. Since w is a zero of a homogeneous first order differential polynomial w'/w is algebraic over $\mathfrak F$. Let u = N(w) then L(u) = 0. Since w'/w is algebraic over $\mathfrak F$, u = kw, where k belongs to an algebraic extension of $\mathfrak F$, so that u'/u is algebraic over $\mathfrak F$ and our theorem follows.

DEFINITION. If the lowest order linear differential polynomial which vanishes for z is of order n, then we say that the linear order of z over $\mathfrak F$ is n. Let the linear order of z over $\mathfrak F$ be n and let V be the set of all linear differential polynomials in z with coefficients in $\mathfrak F$. V is, in an obvious way, an n+1 dimensional vector space over $\mathfrak F$ so that the linear order of any element of V over $\mathfrak F$ is $\leq n$.

² Loewy assumes that $\mathfrak F$ has an algebraically closed field of constants and uses in his proof the automorphisms of a Picard-Vessiot extension of $\mathfrak F$. It is easily seen, however, that by the substitution of relative isomorphisms over $\mathfrak F$ for his automorphisms, the proof remains valid. For, we can use the theorem by Kolchin [1] that an element t belonging to $\mathfrak K$, a differential field extension of $\mathfrak F$, which is left invariant by every isomorphism of $\mathfrak K$ over $\mathfrak F$, belongs to $\mathfrak F$.

THEOREM 4. Let z be a zero of a first order differential polynomial $P(y) \in \mathfrak{F}\{y\}$ and of a linear differential polynomial $L(y) \in \mathfrak{F}\{y\}$, and let $\overline{\mathfrak{F}}$ be the algebraic closure of \mathfrak{F} . There exists $u \in \overline{\mathfrak{F}}\langle z \rangle$ such that z is algebraic over $\mathfrak{F}\langle u \rangle$ and the linear order of u over $\overline{\mathfrak{F}}$ is 1.

REMARK. If a first order differential polynomial $P(y) \in \mathfrak{F}\{y\}$ factors over $\overline{\mathfrak{F}}$ into linear factors, it is well known that any zero u of P(y) is a zero of a linear differential polynomial of higher order with coefficients in \mathfrak{F} [3]. Also, any polynomial $z \in \overline{\mathfrak{F}}\{u\}$ is a zero of a first order differential polynomial $Q(y) \in \mathfrak{F}\{y\}$ and of a linear differential polynomial with coefficients in \mathfrak{F} . Q(y) may remain irreducible over $\overline{\mathfrak{F}}$. For example, let \mathfrak{F} be the field of rational numbers, $u = e^x$, $z = e^x + e^{2x}$; $Q(y) = (2y - y')^2 - (y' - y)$ is, obviously, irreducible over $\overline{\mathfrak{F}}$. Our theorem states that besides the obvious cases just mentioned there is only one more possibility for an element z to be simultaneously a zero of a first order and of a linear differential polynomial; namely that z belongs to an algebraic extension of $\overline{\mathfrak{F}}\langle u\rangle$ where u is a zero of a first order linear differential polynomial with coefficients in $\overline{\mathfrak{F}}$.

PROOF OF THEOREM. If $z \in \overline{\mathfrak{F}}$ we take u = z. Let the order of z over \mathfrak{F} (and hence over $\overline{\mathfrak{F}}$) be 1. Let V be the vector space of all linear differential polynomials in z with coefficients in $\overline{\mathfrak{F}}$. Since z is a zero of a linear differential polynomial, V is a finite dimensional vector space. For any element $v \in V$, $\overline{\mathfrak{F}}\langle v \rangle \subseteq \overline{\mathfrak{F}}\langle z \rangle$ so that order of v over $\overline{\mathfrak{F}}$ is 1. Let A be the set of all elements v in V such that order of v over $\overline{\mathfrak{F}}$ is 1. A is not empty since $z \in A$. Of all the elements in A choose u such that the linear order of u over $\overline{\mathfrak{F}}$ is least. We are going to show that the linear order of u over $\overline{\mathfrak{F}}$ is 1.

Let the linear order of u over $\overline{\mathfrak{F}}$ be n and let W be the n+1 dimensional vector space over $\overline{\mathfrak{F}}$ of all linear differential polynomials in u with coefficients in $\overline{\mathfrak{F}}$. For any $w \in W - \overline{\mathfrak{F}}$ the following holds:

- (1) $w \in A$ (i.e. w is of order 1 over \mathfrak{F}).
- (2) Linear order of w over $\overline{\mathfrak{F}}$ is n.
- (3) If the *n*th order linear equation that w satisfies over $\overline{\mathfrak{F}}$ is M(y) = f, M(y) homogeneous, $f \in \overline{\mathfrak{F}}$; then M(y) is linearly irreducible.

To prove (1) note that $w \in V - \overline{\mathfrak{T}}$ and, since $\overline{\mathfrak{T}}$ is algebraically closed the order of w over $\overline{\mathfrak{T}}$ is 1. Since $w \in A$ the linear order of w over $\overline{\mathfrak{T}}$ is $\geq n$ (since n was least) but $w \in W$ and each element in W has linear order over $\overline{\mathfrak{T}} \leq n$. This proves (2). To prove (3) we note that if $M(y) = N_2(N_1(y))$, $N_1(y)$ of positive order, then the linear order of $N_1(w)$

over $\overline{\mathfrak{F}}$ is the order of N_2 which is less than linear order of w over $\overline{\mathfrak{F}}$ contradicting (2). Hence M(y) is linearly irreducible over $\overline{\mathfrak{F}}$.

Now, by Theorem 2, there exists $w \in W - \overline{\mathfrak{F}}$ such that w is a zero of a first order differential polynomial $Q(y) \in \overline{\mathfrak{F}}\{y\}$ the sum of whose highest degree terms is of order 1. Since $\overline{\mathfrak{F}}$ is algebraically closed the sum of the highest degree terms factors into linear factors with at least one of the factors $N_1(y)$ of order 1. By Theorem 1 a generic zero of the prime differential ideal generated by $N_1(y)$ is a zero of M(y) (since the generic zero is of order 1 over $\overline{\mathfrak{F}}$), so that M(y) belongs to the prime differential ideal $\{N_1(y)\}$. Since M(y) is linear (i.e. of the same degree as N(y)), $M(y) = N_2(N_1(y))$. By (3) M(y) is linearly irreducible so that $N_2(y)$ is of order zero and M(y) is of order 1. By (2) this implies that n=1 and the linear order of u over $\overline{\mathfrak{F}}$ is 1. Since u is of order 1 over \mathfrak{F} it follows that z is algebraic over $\mathfrak{F}(u)$; this proves our theorem.

COROLLARY. If a zero z of a first order differential polynomial $P(y) \in \mathfrak{F}\{y\}$ is a zero of a linear differential polynomial $L(y) \in \mathfrak{F}\{y\}$, then either z is algebraic over \mathfrak{F} or P(y) is solvable by quadratures.

REFERENCES

- 1. E. R. Kolchin, Extension of differential fields, I, Ann. of Math. (2) vol. 43 (1942) pp. 724-729.
- 2. A. Loewy, Über die Irreduzibilität der linearen homogenen Substitusionsgruppen und Differentialgleichungen. Math. Ann. vol. 70 (1911) pp. 94-109.
- 3. H. Poincaré, Sur les groupes des equations lineaires, Acta Math. vol. 4 (1884) pp. 201-311.
- 4. J. F. Ritt, Differential algebra, New York, Amer. Math. Soc. Colloquium Publications, vol. 33, 1950.
- 5. L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, Leipzig, 1897.

STEVENS INSTITUTE OF TECHNOLOGY