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1. Introduction. Let P be a partially ordered set (poset) with

respect to a relation 5|. We say that two elements x and y in P are

incomparable if and only if x%y and x^y. Let us call a subset M of

P diverse if and only if xEM, yEM and x^y imply that x and y

are incomparable. We define the width of P to be l.u.b. {k\k is the

cardinal number of a diverse subset of P}.

We shall call a subset M oí P Dedekind-closed if and only if when-

ever D is an up-directed subset of M and y = l.u.b. D or D is a down-

directed subset of M and y = g.l.b. D, we have yEM. We define a

topology 3) on P whose closed sets are precisely the Dedekind-closed

subset of P and let d denote the interval topology on P, which is

obtained by taking all sets of the form {a, i] as a sub-basis for the

closed sets.

E. S. Wölk introduced the following concept [l]:

Definition. If 3 is a topology defined on P, we shall say that 3 is

order-compatible with P if and only if

(i) every set closed with respect to 3 is Dedekind-closed, and

(ii) every set of the form {xEP\a = x^b} is closed with respect

to 3.

He proved the following theorem in his paper [l].

Theorem. If P is a poset of finite width, then P possesses a unique

or der-compatible topology.

And he proposed the question: "Whether, in the above theorem,

the hypothesis that P is of finite width, can be replaced by the weaker

condition that P contains no infinite diverse subset."

The main purpose of this note is to give the answer to the above

question, and it is contained in the following theorems.

Theorem 1. If P contains no infinite diverse set, then P possesses a

unique order-compatible topology.

Theorem 2. Let P be a complete lattice. Then P possesses a unique

or der-compatible topology if and only if P contains no infinite diverse

set.

2. Main theorems. First we shall prove the following lemma which

is the main result in this paper.
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Lemma. Let P be a poset containing no infinite diverse set and f be a

net on A with range (/) =SEP- If element y of P is the l.u.b. of the

range of every subnet of f, then there exists an up-directed set MES

such that y = l.u.b. (M).

Proof. Let us suppose that the lemma is false. Let Mi be any

maximal up-directed subset of S (which exists by Zorn's lemma). By

the assumption that the lemma is false, we have y^l.u.b. Mi. Hence

there exists no subnet of / with range contained in Mi. Therefore

there exists aiEA such that f(a)ES— Mi for all a^ai. Next let us

choose a maximal up-directed subset M2 of {f(a) | a ¡^ a¡}. Then we

havey;¿l.u.b. M2 and there exists a2EA such that f (a) ES—Mi —M2

for all a^a2^ai. Now choose M3, a maximal up-directed subset of

{f(a) I a ä; a2}, and continue the above process.

Thus we obtain a countable infinite set of maximal up-directed

subsets: Mi, M2, M3, • ■ ■ . From the fact that Mt- is a maximal up-

directed set, we have

(*) xGMi, yEM2 imply x^y. More generally, xEMi, yEM¡,
i <j imply x =£ y.

If for all pairs xÇU. M,-, yGU¿ M¿, there is an element z of U,- M¿

such that x5íz, y g z, then U¿ M¿ is an up-directed set which contra-

dicts the fact that each Mi is a maximal up-directed set. Therefore,

there exist elements aiEMk and b\EMi such that U¿ M¿ contains

no 2 such as z^fli and zW\bi. By the definition of ai and b\ there exists

either an infinite number of Mi which contains no upper bound of

Oi or an infinite number of M¿ which contains no upper bound of b\.

In fact, if there only exists a finite number of M¿ which contains no

upper bound of ßi and My which contains upper bound of bi, then

there exists Mn containing an upper bound of öi and b\ which contra-

dicts the definition of ai and bi. For example, if there exists an infinite

number of M¿ (max, (k, l)^i) which contains no upper bound of 61,

then we put Ci = bi and denote such M¿ by M2, Ml, Ml, ■ ■ ■ (in the

same order as Mt).

Similarly, there exist elements a2EM\' and b2EM% such that

Ui Ml does not contain z such as z^a2, z^b2. By the definition of a2

and b2, there exists either an infinite number of M,2 which contains

no upper bound of a2 or an infinite number of M\ which contains no

upper bound of b2. For example, if there exists an infinite number of

M¡ (max (k', l')l%i) which contains no upper bound of 02, then we

put c2 = a2 and denote such M\ by M\, M\, M%, • • • (in the same

order as M»).

Continuing this process, we have an infinite set Ci, c2, ■ ■ ■ . Set
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{et} is an infinite diverse set of P. In fact, by the definition of Mt-,

x£Mf, yEM% and i<k imply x^y. Hence by the definition of ck

we have c(^ck for i<k. Since each of MJ contains no upper bound of

Cn-i, we have Ci%ck for i<k. Therefore we have Ci%ck for i^k. The

proof is complete.

We obtain from the above lemma the following theorem.

Theorem 1. If P contains no infinite diverse set, then P possesses a

unique order-compatible topology.

The proof will not be given since it is exactly the same as for the

proof of Wolk's Theorem 1 in [l].

Theorem 2. Let P be a complete lattice. Then, P possesses a unique

order-compatible topology if and only if P contains no infinite diverse

set.

Proof. Since P is a complete lattice, P is compact in the interval

topology [2]. Now, suppose that P possesses a unique order-com-

patible topology, then P is compact in the S)-topology. Suppose that

{a»| * = 1, 2, ■ ■ • } is an infinite diverse subset of P. Let Fn

= {a¿|¿^ra}. Then Fn is closed in the ©-topology and the family of

all Fn has the finite intersection property. But f)F„ is empty which is

a contradiction.

Since the necessity of the condition is Theorem 1, then the theorem

is proved.
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