UPPER AND LOWER COMPLEMENTATION IN
A MODULAR LATTICE

S. P. AVANN

In this paper we define upper and lower complements of a EL,
always a finite modular lattice, such that these become an ordinary
complement of @ when L is complemented (Theorem 8). Uniqueness
of upper or of lower complements for all ¢ € L implies L is distributive
(Theorem 5). Our principal result is a set of 8 equivalent conditions
for uniqueness of upper or lower complement of a particular element
a&EL (Theorem 4).

We shall employ D, 2, > for proper inclusion, inclusion, and
covering respectively, and C, €, < for their duals. Unit and zero of
L will be # and 2z respectively. Otherwise, notation and terminology of
Birkhoff’s Lattice theory [2] will be adhered to.

We shall denote by A the set A = {xEPI xga} where P is the set
of join-irreducibles of L partially ordered by the ordering relation of
L. Elementary properties enjoyed by these sets 4 are: (1) a =U,c4 x;
(2) A=Bifandonlyifa=b; (3) ADBifand only if a Db; (4) c=a\Jb
and d=aMb imply C2A4+B and D=A4-B where (4) and (-) are
point-set sum and product.

We denote by a* the join of all elements covering e and by ax the
meet of all elements covered by a. We define #*=u and 2z, =2.

The quotient ¢/a is an upper transpose of b/d and b/d is a lower
transpose of ¢/a if and only if c=a\Ub and d =aMb.

In Lemma 1, Theorems 5 and 8, and Corollary to Theorem 9 use
of parenthesized words yields the dual theorem.

LemMA 1. In a modular lattice, c/a (b/d) is a maximal (minimal)
complemented quotient in the complete set Q of projective quotients to
which 1t belongs if and only if c=a* (d=0bx).

Proor. First suppose ¢/a is a maximal complemented quotient
and consider a;>a. Then a;Cc; otherwise a;/\c=a and cUa;/a; is a
proper upper transpose of ¢/a contradicting the maximality of ¢/a.
Applying Theorem 6 [2, p. 105] we obtain ¢=U,;,a;=a*. Con-
versely, if c=a*, then ¢/a is complemented by the same Theorem 6.
Assume there exists a proper upper transpose e/f of ¢/a. Then for
some a1, f2a1>a=fMNc. But a1 Ca*=c¢ by definition, which leads to
the contradiction a1 SfM\c¢=a. Hence ¢/a has no proper upper trans-
pose.
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DEFINITION 1. In a modular lattice the numerator ¢y of a minimal
quotient projective with a*/a is called an upper complement of a.
It is called a direct upper complement if the minimal quotient is a
lower transpose of a*/a, otherwise ay is called indirect. Dually, the
denominator @}, of a maximal quotient projective with a/ax, is called
a lower complement of a. It is called direct if the maximal quotient
is an upper transpose of a/ax, otherwise indirect. An upper associate
ay of a is the denominator of a maximal quotient projective with
a*/a, and a lower associate a of @ is the numerator of a minimal
quotient projective with a/ax.

In view of Lemma 1 @ is both an upper and a lower associate of
itself.

THEOREM 1. In a modular lattice b is a (direct) upper complement
ay of a if and only if a is a (direct) lower complement by, of b.

Proor. Suppose b =ay is determined by the minimal quotient b/d
projective to a*/a, the latter being complemented by Lemma 1.
Projective quotients are isomorphic, so that b/d is also complemented
as well as minimal. Hence d =04 by Lemma 1. Again by Lemma 1
e*/a is maximal and is projective to b/bx. Hence a =b}. The converse
follows by duality. The relationship between a and b is direct if and
only if a*/a and b/bs are upper and lower transposes of one another
respectively.

THEOREM 2. In a modular lattice L there exists at least one direct
upper complement and one direct lower complement of each a S L.

Proor. The theorem follows by the transitivity of lower and upper
transposition. If a*/a has no proper lower transpose, a* is the unique
upper complement of @, and dually.

THEOREM 3. In a modular lattice L the number of upper (lower)
complements of each a &L is equal to the number of upper (lower)
associates of a.

Proor. The theorem follows directly from Definition 1 and Theo-
rem 6.2 of [1], which asserts that in a complete set Q of projective
complemented quotients, the number of maximal quotients is equal
to the number of minimal quotients.

CoROLLARY. For b=ay and a=>b}, in a modular lattice, the number
of upper complements of a is equal to the number of lower complements

of b.

THEOREM 4. In a modular lattice L let b and a be respectively a direct
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upper complement and a direct lower complement of the other and let Q
be the complete set of projective complemented quotients to which a*/a
and b/bs belong. The following conditions are equivalent.

(A) b is the unique upper complement of a.

(B) a is the unique lower complement of b.

(C) Every e/fEQ is a lower transpose of a*/a and an upper trans-
pose of b/bs.

(D) a*/bs is (tsomorphic to) the direct product a/bsXb/bs.

(E) a and b are a distributive pair: all 6 distributive laws hold for
a, b and every g& L.

(F) A*=A4+B.

(G) A*—A =B —Bx.

(H) E—F is an invariant subset of P, the set of all join-irreducible
elements of L, for all e/fEQ.

Proor. (A) implies (B). Referring to Theorem 1 and its proof, when
b is the only upper complement of a, /b4 is the unique minimal quo-
tient of Q. From [1, Theorem 6.2] quoted in the proof of Theorem 3
we conclude that there exists exactly one maximal quotient of Q,
which must be a*/a by Lemma 1. Hence a is the unique lower com-
plement of b.

(B) implies (A) by duality.

(A) and (B) imply (C). Suppose there exists in Q a quotient e/f
which is not a lower transpose of a*/a. By Lemma 1 a maximal upper
transpose of e/f is of the form g*/g and is maximal in Q. Since lower
transposition is transitive, g*/g must also fail to be a lower transpose
of a*/a. Thus g is a lower complement of b and is distinct from a,
contradicting hypothesis (B). Thus every ¢/f&Q is a lower transpose
of ¢*/a and by a dual argument is an upper transpose of b/bx.

(C) implies (A) and (B) since a*/a and b/bsx are obviously the
unique maximal and the unique minimal quotients respectively of Q.

(C) implies (D). As an immediate corollary of Theorem 7 [2,
p. 73] and its dual, (D) is valid if and only if for every kCa*/b«
k= (ENa)\J(ENb) = (E\Ja) N\ (E\Ub). Assume (D) is false and that &
is minimal in a*/bs such that 2D (AMa)\J(EMNDb). Obviously kD bs.
Let g be an arbitrary element of a*/bx covered by k. Then
EDMBNa) Y EBND) DENa)J(gMNbd) =g It follows that
g=(kNa)\J(hMb) and that g is unique; i.e. & is a join-irreducible of
a*/bs (h covers only one element g). Moreover, in a*/bsx g, b2DEMND
2gMb from which ANb=gNMb. Next, h>g=gU(bNg) =g\J(bNk)
=(g\Ub)Nk by the modular axiom. Therefore by the upper semi-
modularity axiom A\Ub = (g\Ub)\Uk > g\Ub. We observe for later refer-
ence that 2\Ub/k is an upper transpose of g\Ub/g. Now t—¢Ma deter-
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mines Dedekind’s natural isomorphism [2, Theorem 6, p. 73] between
a*/b and its lower transpose a/bx. Hence (A\Ub)MNa > (g\Ub)Na in
a/bs. Validity of one distributive law gN (@ Ubd) =gMNa* =g
= (gNa)\J(gMb) implies validity of all 6. Hence (A\Ub)MNa > (g\Ub)Na
=(gNa) U BdNa)=(gNa)Jbx =gMNa. Again, (gMNa)Jb
=(gUb N@\IVbd) =(g\Ub) Na* =g\Uhb, together with
(gNMa)Mb=gMbs=bx, show that g\Ub/gMa is an upper transpose of
b/b+EQ and therefore also complemented. Hence by [2, p. 105,
Theorem 6, L7'] g\Ub is the join of elements covering gMa. Apply-
ing the modular axiom, A\Ub=a*N\(A\Ub)= [(g\Ub)Ua]N(k\Ub)
= (g\Ub)\U [aN(k\Ub) ] likewise is a join of elements covering gMa.
Thus £\Ub/gMa satisfies L7’ and is complemented. Since % is a join-
irreducible of a*/by, it is a join-irreducible of the complemented quo-
tient sublattice A\Ub/gMa and must cover gMa. Thus A>g=gMNa.
We have now shown A\Ub/k is an upper transpose of g\Ub/g=g\Ub/gMNa,
which in turn is an upper transpose of b/bx. Hence by transitivity of
upper transposition and hypothesis (C) a*/a is an upper transpose of
r\Ub/h so that hTa. Thus the initial assumption that (D) is false
leads to the contradiction g= (AMa)\J(AMNb) =h\J(AMNb) =h.

(D) implies (C). Let e¢/f be arbitrary in Q. By the extended semi-
modularity axiom [2, p. 100, (2)] and its dual there exists between
a*/a and e/f a sequence of upper and lower transposes, each a “cover-
ing” transpose: a*/a=e¢o/fo~er/fi~ -+ - ~e,/fn=e/f where e;.1>¢;
and f;1>f; or e;1<e; and fia<f; (1=1, 2, - - -, n). We shall prove
by an induction on < that all these quotients satisfy (C). Trivially for
1=0, (C) is satisfied. Assume (C) is satisfied for 7. Suppose e;11/fin
is an upper covering transpose of e¢;/f;, hence is also an upper trans-
pose of b/by. Assume aDPfi. Then fi1DaMNfiy12Df; demands
finn>aNfia=f;. By the upper semi-modularity axiom a\Uf;1>a.
But then a\Ufi;1Caf. Then fii=a*/bx=a/bsXb/bsx requires fip
= (@a\Yfix) N (O Ifin1) = (@Ufs)Neir. But (a\Ufia) Ve = (a\Ufip1)
U i) =a*Ufipi=a*. We have verified that a*/a\Uf;y, is an
upper transpose of e;41/fi11. Hence a*/a is projective with and there-
fore isomorphic to a proper sublattice a*/a\Uf,1 of itself, a contradic-
tion. Thus a2Df;;1. We now obtain e;1\Ja = (f;,\Ub)Ua=aUb=0a*
and by the modular law e;+1f'\a = (f¢+1 Ub) Na =f,~+1U(bf\a) =f.'+1 Ubx
=f:1. This verifies that e,1/fi41 is a lower transpose of a*/a as well
as an upper transpose of b/bs, which is condition (C). If e;y1/fi11 were
rather a lower covering transpose of ¢;/f;, (C) follows by a dual argu-
ment. The basis of the induction is now complete, and e/f satisfies
©.

(D) implies (F). Let x be an arbitrary join-irreducible in 4*: xCa*.
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Let g be a minimal element of a*/bs such that xCg. By hypothesis
a*Dg=(gUa)N(g\Ub) D(x\Ja)N(x\Jb) Dx\J(aMb) =x\JbxDx, bs.
By minimality g= (xUa)N\(xUb) =x\U(eMb). Hence x, a, b form a
distributive set and (xMa)\J(xMNbd) =xMN(a\Ub)=xNa*=x. Join-
irreducibility demands xNa=x, xCa, xEA4 or xN\b=x, xZb, xEB.
Hence x& (4 +B), so that A¥*C A+ BCA* yields equality.

(F) implies (E). Let g be arbitrary in L and let r=(a\Ub)MNg,
s=aNgt=bNgov=>@NgUbNg) =sUt. Then R=A4%*-G
=(A+B)-G=A-G+B-G=S+TZCVCR, since vCr. Hence R=V
and r=v.

(E) implies (D). For arbitrary g € a*/bxg = g U bxe = g\U (a M b)
=(gUa)M(g\Ub), which is the necessary and sufficient condition,
cited earlier, for the desired direct product condition.

(F) implies (G). A*=A+B implies A*— 4 =B—A-B=B—Bx.

(G) implies (F). A*=A+(B—Bs)=A+(B—A-B)=A+B.

(G) implies (H). We already have shown the equivalence of
(A)-(G) inclusive. By (C) and (F) we obtain E=E-A*=E-(4+B)
=FE-A+4E-B=F+4B. Therefore E—~F=B—B-F=B—By=A4*—A
for all e/fEQ.

(H) implies (G) trivially. This completes the proof of Theorem 4.,

THEOREM 5. A modular lattice L is distributive if and only if each
a &L has exactly one upper (lower) complement.

Proor. First, suppose each a €L has exactly one upper comple-
ment. Assume that L is nondistributive. It will then have a nondis-
tributive modular sublattice of order 5 with coverings: c>ey, e, €3
>d for distinct e, e., e;. Let ¢\Ja/a be a maximal upper transpose of
the prime quotient ¢/e; and therefore a maximal prime quotient of
the complete set Q of projective prime (trivially complemented)
quotients to which the prime quotients of ¢/d belong. By Lemma 1
cUa=a*>a. Let b/b/N\d be a minimal lower transpose of e;/d hence
a minimal lower transpose of a\Uc/a. Thus b=af, the unique upper
complement of a, and b/bMN\d is b/aMb. Likewise a minimal lower
transpose of e;/d must be b/aMb. But then e;=b\Ud =¢;, a contra-
diction. Hence L is distributive.

Conversely, suppose L is distributive. Consider arbitrary eEL
with b=ay, a=>5}. Condition (E) of Theorem 4 holds, hence also
conditions (A) and (B) by that Theorem.

DEFINITION 2. The quotient a/b of a modular lattice L is called a
central sublattice of L if and only if a/b is complemented and has no
upper and no lower transposes.
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THEOREM 6. In a modular lattice L a/b is a central sublattice if and
only if a=b* and b=a*.

Proor. This follows directly from Definition 2 and Lemma 1.

THEOREM 7. In a modular lattice L if b is both an upper and a lower
complement of a then a* =b*, ax=>bx, and a*/bs is a central sublattice.

Proor. By Theorem 1 a is also both an upper and a lower comple-
ment of 5. Hence a*=a\Ub=>b* and bx=aMNb=ax. Both b/bs and
a/ax are complemented. By [2, p. 105, Theorem 6, L7'] @ and b are
both joins of elements covering asx=bx«, therefore, so is a*=0%*, and
by the same Theorem a*/as is complemented. If a*/a« has an upper
transpose, so would also the subquotient a*/a by Dedekind’s Trans-
position Principle, [2, Theorem 6, p. 73] violating the maximality
asserted by Lemma 1. Thus ¢*/ax has no upper transpose, and by a
dual argument has no lower transpose. Hence a*/ax is central.

THEOREM 8. For an arbitrary element a of a complemented modular
lattice L, b is an ordinary complement of a if and only if b is an upper
(lower) complement of a.

Proor. All quotients of L are complemented. Hence a*=u=5*
and ax=2z=bs. The equivalence then follows directly from applica-
tion of the definitions of each of the types of complements.

Theorem 9 and its corollary are decidedly stronger than the con-
verse of Theorem 8.

THEOREM 9. If there exists one element a of a modular lattice L for
which b& L is stmultaneously an upper, a lower, and an ordinary com-
plement of a, then L is complemented.

Proor. By Theorem 7 a*=a\Ub=u, ax=aMNb=z, and a*/ax=u/z
=L is complemented.

COROLLARY. If in a modular lattice ax=2 (a* =u) and b is both an
ordinary and an upper (a lower) complement of a, then L is comple-
mented.

We note that ax« =2 whenever a=z or a>z.
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