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In this paper we define upper and lower complements of a£7,

always a finite modular lattice, such that these become an ordinary

complement of a when 7 is complemented (Theorem 8). Uniqueness

of upper or of lower complements for all a £7 implies 7 is distributive

(Theorem 5). Our principal result is a set of 8 equivalent conditions

for uniqueness of upper or lower complement of a particular element

a£7 (Theorem 4).

We shall employ D, 2, > for proper inclusion, inclusion, and

covering respectively, and C Ç, < for their duals. Unit and zero of

7 will be u and z respectively. Otherwise, notation and terminology of

Birkhoff's Lattice theory [2] will be adhered to.

We shall denote by A the set A = {x£P|xÇa} where P is the set

of join-irreducibles of L partially ordered by the ordering relation of

7. Elementary properties enjoyed by these sets A are: (1) a = \JxSA x;

(2)A=Bii and only \ia = b; (3) ADB if and only if aDb; (4) c = a\Jb
and d = af\b imply CQ.A+B and D = A-B where ( + ) and (•) are

point-set sum and product.

We denote by a* the join of all elements covering a and by a* the

meet of all elements covered by a. We define u* = u and z* = z.

The quotient c/a is an upper transpose of b/d and b/d is a lower

transpose of c/a if and only if c = a\Jb and d = aC\b.

In Lemma 1, Theorems 5 and 8, and Corollary to Theorem 9 use

of parenthesized words yields the dual theorem.

Lemma 1. In a modular lattice, c/a (b/d) is a maximal (minimal)

complemented quotient in the complete set Q of projective quotients to

which it belongs if and only if c = a* (¿ = o*).

Proof. First suppose c/a is a maximal complemented quotient

and consider a,->a. Then a.Çc; otherwise a¿fV = a and c\Jai/ai is a

proper upper transpose of c/a contradicting the maximality of c/a.

Applying Theorem 6 [2, p. 105] we obtain c = Uai>0 at = a*. Con-

versely, if c = a*, then c/a is complemented by the same Theorem 6.

Assume there exists a proper upper transpose e/f of c/a. Then for

some ai, f~^ai>a=fr\c. But aiÇa* = c by definition, which leads to

the contradiction ai Ç^f(~\c = a. Hence c/a has no proper upper trans-

pose.
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Definition 1. In a modular lattice the numerator a'v of a minimal

quotient projective with a*¡a is called an upper complement of a.

It is called a direct upper complement if the minimal quotient is a

lower transpose of a*/a, otherwise a'y is called indirect. Dually, the

denominator a'L of a maximal quotient projective with a/a*, is called

a lower complement of a. It is called direct if the maximal quotient

is an upper transpose of a/a*, otherwise indirect. An upper associate

au of a is the denominator of a maximal quotient projective with

a*/a, and a lower associate o¿ of a is the numerator of a minimal

quotient projective with a/a*.

In view of Lemma 1 a is both an upper and a lower associate of

itself.

Theorem 1. In a modular lattice b is a (direct) upper complement

a'u of a if and only if a is a (direct) lower complement b'i of b.

Proof. Suppose b = a'v is determined by the minimal quotient b/d

projective to a*/a, the latter being complemented by Lemma 1.

Projective quotients are isomorphic, so that b/d is also complemented

as well as minimal. Hence d = b* by Lemma 1. Again by Lemma 1

a*/a is maximal and is projective to o/ô*. Hence a = b'L. The converse

follows by duality. The relationship between a and o is direct if and

only if a*/a and b/b* are upper and lower transposes of one another

respectively.

Theorem 2. In a modular lattice 7 there exists at least one direct

upper complement and one direct lower complement of each a £7,.

Proof. The theorem follows by the transitivity of lower and upper

transposition. If a*/a has no proper lower transpose, a* is the unique

upper complement of a, and dually.

Theorem 3. In a modular lattice L the number of upper (lower)

complements of each o£7 is equal to the number of upper (lower)

associates of a.

Proof. The theorem follows directly from Definition 1 and Theo-

rem 6.2 of [l], which asserts that in a complete set Q of projective

complemented quotients, the number of maximal quotients is equal

to the number of minimal quotients.

Corollary. For b = a¿ and a = b[, in a modular lattice, the number

of upper complements of a is equal to the number of lower complements

ofb.

Theorem 4. In a modular lattice 7 let b and a be respectively a direct
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upper complement and a direct lower complement of the other and let Q

be the complete set of projective complemented quotients to which a*/a

and b/b* belong. The following conditions are equivalent.

(A) b is the unique upper complement of a.

(B) a is the unique lower complement of b.

(C) Every e/f^Q is a lower transpose of a*/a and an upper trans-

pose of b/b*.
(D) a*/b* is (isomorphic to) the direct product a/b*Xb/b*.

(E) a and b are a distributive pair : all 6 distributive laws hold for

a, b and every g£7,.

(F) A*=A+B.
(G) A*-A=B-B*.
(H) E — F is an invariant subset of P, the set of all join-irreducible

elements of 7, for all e/fÇzQ.

Proof. (A) implies (B). Referring to Theorem 1 and its proof, when

b is the only upper complement of a, b/b* is the unique minimal quo-

tient of Q. From [l, Theorem 6.2] quoted in the proof of Theorem 3

we conclude that there exists exactly one maximal quotient of Q,

which must be a*/a by Lemma 1. Hence a is the unique lower com-

plement of ö.

(B) implies (A) by duality.

(A) and (B) imply (C). Suppose there exists in Q a quotient e/f

which is not a lower transpose of a*/a. By Lemma 1 a maximal upper

transpose of e/f is of the form g*/g and is maximal in Q. Since lower

transposition is transitive, g*/g must also fail to be a lower transpose

of a*¡a. Thus g is a lower complement of b and is distinct from a,

contradicting hypothesis (B). Thus every e//£<2 is a lower transpose

of a*/a and by a dual argument is an upper transpose of 6/o*.

(C) implies (A) and (B) since a*/a and ô/o* are obviously the

unique maximal and the unique minimal quotients respectively of Q.

(C) implies (D). As an immediate corollary of Theorem 7 [2,

p. 73] and its dual, (D) is valid if and only if for every &£a*/°*

k = (kr\a)^J(kr\b) = (k^Ja)r\(kVJb). Assume (D) is false and that h

is minimal in a*/b* such that hZ)(h(~\a)VJ'(h(~\b). Obviously /0&*.

Let g be an arbitrary element of a*/b* covered by h. Then

h D (h n a) W (h r\ b) 2 (g H a) U (g C\ ô) = g. It follows that
g= (hf\a)\J(hf~\b) and that g is unique; i.e. h is a join-irreducible of

a*/b* (h covers only one element g). Moreover, in a*/b* g, b^hC\b

2gno from which hC\b = gr\b. Next, h>g = g\J(br\g)=g^J(bC\h)
= (g\Jb)C\h by the modular axiom. Therefore by the upper semi-

modularity axiom hSJb= (g\Jb)\Jh>g\Jb. We observe for later refer-

ence that h\Jb/h is an upper transpose of g^Jb/g. Now t^tCsa deter-
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mines Dedekind's natural isomorphism [2, Theorem 6, p. 73] between

a*/b and its lower transpose a/6*. Hence (h\Jb)r\a>(g\Jb)r\a in

a/6*. Validity of one distributive law gC\ (a^J b) = g C\ a* = g

= (gC\a)U(gr\b) implies validity of all 6. Hence (hVJb)C\a > (gU6)C\a

= (gC\a) U (bC\a) = (g r\ a) W o* = g H a. Again, (g Pi a) U 6

= (g U 6) n (a U ô) = (g U 6) H a* = g U 6, together with

(gPia)P\6=gP\6* = 6*, show that gVJb/gC\a is an upper transpose of

6/6*£Q and therefore also complemented. Hence by [2, p. 105,

Theorem 6, L7'] ¿Ub is the join of elements covering gf~\a. Apply-

ing the modular axiom, h*Ub = a*r\(h\Jb) = [(gU6)Wa]P\(/zW6)

= (g\Jb)VJ[af^\(h\Jb)\ likewise is a join of elements covering g(~\a.

Thus h\Jb/gf^\a satisfies L7' and is complemented. Since A is a join-

irreducible of a*/b*, it is a join-irreducible of the complemented quo-

tient sublattice &W6/gP\a and must cover gP\a. Thus h>g = gC\a.

We have now shown h^Jb/h is an upper transpose of gW6/g=gW6/gPa,

which in turn is an upper transpose of 6/6*. Hence by transitivity of

upper transposition and hypothesis (C) a*/a is an upper transpose of

hVJb/h so that hÇ.a. Thus the initial assumption that (D) is false

leads to the contradiction g=(hr\a)yj(h(~\b)=hKJ(hr\b)=h.

(D) implies (C). Let e/f be arbitrary in Q. By the extended semi-

modularity axiom [2, p. 100, (2)] and its dual there exists between

a*/a and e/f a sequence of upper and lower transposes, each a "cover-

ing" transpose: a*/a = eo//o~ei//i~ • ■ ■ ~e„//n = e// where e¿_i>e¿

and/,_i>/< or e,_i<c¿ and/í_i</,- (i=í, 2, ■ ■ ■ , n). We shall prove

by an induction on * that all these quotients satisfy (C). Trivially for

i = 0, (C) is satisfied. Assume (C) is satisfied for i. Suppose ei+i/fi+i

is an upper covering transpose of e,//„ hence is also an upper trans-

pose of 6/6*. Assume aj/i+i. Then /,+OaO/«+i2/i demands

fi+i>aCy.+i =/,-. By the upper semi-modularity axiom aKJfi+i>a.

But then aVJfi+iQa*. Then /,+i=a*/6*=a/6*X6/6* requires /¿+i

= (aVJfi+i)n(b\Jfi+i) = (aVfi+i)r\ei+i. But (aU/,.+1)Uei+1 = (oU/w)
W(ôW/,+i) =a*Ufi+i=a*. We have verified that a*/aW/t+i is an

upper transpose of ei+i/fi+i. Hence a*/a is projective with and there-

fore isomorphic to a proper sublattice a*/a\Jfi+i of itself, a contradic-

tion. Thus a2/i+i- We now obtain ci+iUa= (/¡+iUè)Ua = aU& = a*

and by the modular law e.+iPa = (/¿+i W6)Pia =/,+iW(6Pia) =/,+iW6*

=fi+i. This verifies that el+i//»+i is a lower transpose of a*/a as well

as an upper transpose of 6/6*, which is condition (C). If e¿+i//¿+i were

rather a lower covering transpose of e%-//<, (C) follows by a dual argu-

ment. The basis of the induction is now complete, and e/f satisfies

(C).
(D) implies (F). Let x be an arbitrary join-irreducible in A*: xQa*.
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Let g be a minimal element of a*/6* such that xÇg. By hypothesis

a*3g=(gUa)P(gU6)2(xUa)P(xW6)2x^(aP6) = xU6*2x, 6*.
By minimality g = (xUa)P(xU6) = xU(aP6). Hence x, a, 6 form a

distributive set and (xPa)U(xP6) = xP(aU6) =xf~\a* = x. Join-

irreducibility demands x(~\a = x, xÇIa, x£^4 or xP6 = x, xÇ6, x£5.

Hence x£.(A+B), so that A*QA +Bez.A* yields equality.

(F) implies (E). Let g be arbitrary in 7 and let r=(aW6)Pg,

s = aC\g,t = bC\g,v = (a Pig) U (6 P g) = 5 Ui. Then R = A*-G
= (A+B)-G = A-G+B-G = S+TÇZVÇZR, since sÇr. Hence i?= 7
and r = D.

(E) implies (D). For arbitrary g £ a*/6* g = g\J 6* = g W (a P 6)

= (gWa)P(gW6), which is the necessary and sufficient condition,

cited earlier, for the desired direct product condition.

(F) implies (G). A*=A+B implies A*-A =B-A -B=B-B*.
(G) implies (F). A*=A+(B-B*)=A + (B-A-B)=A+B.
(G) implies (H). We already have shown the equivalence of

(A)-(G) inclusive. By (C) and (F) we obtain E = E-A*=E-(A+B)

= E-A+E-B = F+B. Therefore E-F = B-B-F = B-B* = A*-A
for all e/fEQ.

(H) implies (G) trivially. This completes the proof of Theorem 4.

Theorem 5. A modular lattice L is distributive if and only if each

aEL has exactly one upper (lower) complement.

Proof. First, suppose each a£7 has exactly one upper comple-

ment. Assume that 7 is nondistributive. It will then have a nondis-

tributive modular sublattice of order 5 with coverings: c>eit e%, e3

>d for distinct ei, e2, e¡. Let c\Ja/a be a maximal upper transpose of

the prime quotient c/ei and therefore a maximal prime quotient of

the complete set Q of projective prime (trivially complemented)

quotients to which the prime quotients of c/d belong. By Lemma 1

c\Ja = a*>a. Let b/bC\d be a minimal lower transpose of e-i/d hence

a minimal lower transpose of a\Jc/a. Thus b = a'u, the unique upper

complement of a, and b/b(~\d is 6/aP6. Likewise a minimal lower

transpose of e3/d must be b/ai\b. But then e2 = 6Wd = e3, a contra-

diction. Hence L is distributive.

Conversely, suppose L is distributive. Consider arbitrary a£7

with 6 = a'r/, a = 6£. Condition (E) of Theorem 4 holds, hence also

conditions (A) and (B) by that Theorem.

Definition 2. The quotient a/6 of a modular lattice L is called a

central sublattice of 7 if and only if a/b is complemented and has no

upper and no lower transposes.
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Theorem 6. In a modular lattice L a/b is a central sublattice if and

only if a = b* and b = a*.

Proof. This follows directly from Definition 2 and Lemma 1.

Theorem 7. In a modular lattice 7 if b is both an upper and a lower

complement of a then a* = 6*, a* = 6*, and a*/b* is a central sublattice.

Proof. By Theorem 1 a is also both an upper and a lower comple-

ment of 6. Hence a*=a\Jb = b* and 6* = aP6 = a*. Both 6/6* and

a/a* are complemented. By [2, p. 105, Theorem 6, L7'] a and 6 are

both joins of elements covering a* = 6*, therefore, so is a* = 6*, and

by the same Theorem a*/a* is complemented. If a*¡a* has an upper

transpose, so would also the subquotient a*/a by Dedekind's Trans-

position Principle, [2, Theorem 6, p. 73] violating the maximality

asserted by Lemma 1. Thus a*/a* has no upper transpose, and by a

dual argument has no lower transpose. Hence a*/a* is central.

Theorem 8. For an arbitrary element a of a complemented modular

lattice 7, b is an ordinary complement of a if and only if b is an upper

(lower) complement of a.

Proof. All quotients of 7 are complemented. Hence a*=u = b*

and a* = 2 = 6*. The equivalence then follows directly from applica-

tion of the definitions of each of the types of complements.

Theorem 9 and its corollary are decidedly stronger than the con-

verse of Theorem 8.

Theorem 9. If there exists one element a of a modular lattice 7 for

which bÇzL is simultaneously an upper, a lower, and an ordinary com-

plement of a, then 7 is complemented.

Proof. By Theorem 7 a* = a\Jb = u, a*=ai\b = z, and a*/a* = u/z

= 7 is complemented.

Corollary. If in a modular lattice a*=z (a* = u) and 6 is both an

ordinary and an upper (a lower) complement of a, then 7 is comple-

mented.

We note that a* = z whenever a = z or a>z.

Bibliography

1. S. P. Avann, Dual symmetry of projective sets in a finite modular lattice, Trans.

Amer. Math. Soc. vol. 89 (1958) pp. 541-558.
2. G. Birkhoff, Lattice theory, rev. ed., Amer. Math. Soc. Colloquium Publications,

vol. 25, 1948.

University of Washington


